Coursera
在线学位寻找职业企业版面向大学
  • 浏览
  • 顶级课程
  • 登录
  • 免费加入
    Coursera
    • 浏览
    • Logistic Regression
    Related topics:线性回归回归模型供应链分析糖尿病杜克统计Numpy

    筛选依据

    ''logistic regression'的 84 个结果

    • University of Colorado Boulder

      University of Colorado Boulder

      Predictive Modeling and Analytics

      您将获得的技能: Analysis, Data Analysis, General Statistics, Probability & Statistics, Artificial Neural Networks, Statistical Analysis, Applied Machine Learning, Business Analysis, Spreadsheet Software, Analytics, Machine Learning Algorithms, Supply Chain, Regression Analysis, Predictive Analytics, Machine Learning, Predictive Modelling, Regression, Computer Vision, Data Management, Data Analysis Software

      3.6

      (554 条评论)

      Mixed · Course · 1-4 Weeks

    • University of California, Irvine

      University of California, Irvine

      Data Science Fundamentals

      您将获得的技能: Accounting, Algebra, Algorithms, Analysis, Big Data, Business Analysis, Cloud Computing, Communication, Data Analysis, Data Management, Data Mining, Data Structures, Exploratory Data Analysis, General Statistics, Human Resources, Machine Learning, Marketing, Natural Language Processing, Probability & Statistics, Randomness, Regression, Regression Analysis, Statistical Analysis, Supervision, Supply Chain Systems, Supply Chain and Logistics, Theoretical Computer Science

      4.1

      (113 条评论)

      Beginner · Specialization · 3+ Months

    • University of California, Irvine

      University of California, Irvine

      Predictive Modeling, Model Fitting, and Regression Analysis

      您将获得的技能: Randomness, Data Structures, General Statistics, Business Analysis, Exploratory Data Analysis, Data Analysis, Analysis, Supply Chain and Logistics, Big Data, Probability & Statistics, Theoretical Computer Science, Supervision, Data Management, Algorithms, Algebra, Machine Learning, Regression Analysis, Regression, Data Clustering Algorithms, Supply Chain Systems

      4.3

      (36 条评论)

      Intermediate · Course · 1-4 Weeks

    • IBM

      IBM

      Deep Neural Networks with PyTorch

      您将获得的技能: General Statistics, Computer Programming, Theoretical Computer Science, Convolutional Neural Network, Artificial Neural Networks, Python Programming, Computer Graphics, Computer Graphic Techniques, Mathematics, Econometrics, Probability Distribution, Algorithms, Computer Vision, Regression, PyTorch, Statistical Machine Learning, Probability & Statistics, Machine Learning Algorithms, Deep Learning, Machine Learning

      4.4

      (1.1k 条评论)

      Intermediate · Course · 1-3 Months

    • University of Amsterdam

      University of Amsterdam

      Inferential Statistics

      您将获得的技能: Analysis, Statistical Programming, General Statistics, Experiment, Probability & Statistics, Statistical Inference, R Programming, Regression, Inference

      4.3

      (553 条评论)

      Mixed · Course · 1-3 Months

    • Sungkyunkwan University

      Sungkyunkwan University

      Using R for Regression and Machine Learning in Investment

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      University of Illinois at Urbana-Champaign

      University of Illinois at Urbana-Champaign

      Data Modeling and Regression Analysis in Business

      您将获得的技能: Analysis, R Programming, Data Analysis, Big Data, Statistical Programming, Business Analysis, Data Visualization, Advertising, Theoretical Computer Science, Probability & Statistics, General Statistics, Marketing, Statistical Analysis, Supply Chain and Logistics, Communication, Data Management, Rstudio, Regression, Regression Analysis, Analytics, Algorithms

      4.3

      (52 条评论)

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      Rutgers the State University of New Jersey

      Rutgers the State University of New Jersey

      Supply Chain Analytics

      您将获得的技能: Accounting, Analysis, Analytics, Big Data, Budget Management, Business Analysis, Chaining, Data Analysis, Data Management, Demand, Entrepreneurship, Finance, Financial Analysis, Inventory Management, Leadership and Management, Marketing, Operations Management, Probability & Statistics, Regression, Research and Design, Sales, Strategy and Operations, Supply Chain, Supply Chain Systems, Supply Chain and Logistics

      4.6

      (1.6k 条评论)

      Beginner · Specialization · 3+ Months

    • Placeholder
      University of Pennsylvania

      University of Pennsylvania

      Business Analytics

      您将获得的技能: Accounting, Analysis, Analytics, Big Data, Business Analysis, Collaboration, Communication, Computational Logic, Computer Programming, Computer Programming Tools, Customer Analysis, Data Analysis, Data Analysis Software, Data Management, Data Structures, Decision Making, Decision Tree, Entrepreneurship, Financial Analysis, Forecasting, General Statistics, Human Resources, Leadership and Management, Marketing, Mathematical Optimization, Mathematical Theory & Analysis, Mathematics, Operational Analysis, People Analysis, Performance Management, Probability & Statistics, Research and Design, Spreadsheet Software, Statistical Analysis, Strategy and Operations, Supply Chain and Logistics, Talent Management, Theoretical Computer Science

      4.6

      (16.5k 条评论)

      Beginner · Specialization · 3+ Months

    • Placeholder
      IBM

      IBM

      IBM Machine Learning

      您将获得的技能: Advertising, Algorithms, Analysis, Applied Machine Learning, Artificial Neural Networks, Business Analysis, Communication, Computer Graphic Techniques, Computer Graphics, Computer Programming, Computer Vision, Data Analysis, Data Management, Data Structures, Data Visualization, Deep Learning, Dimensionality Reduction, Experiment, Exploratory Data Analysis, Feature Engineering, Forecasting, General Statistics, Journalism, Linear Algebra, Machine Learning, Machine Learning Algorithms, Marketing, Mathematics, Probability & Statistics, Python Programming, Regression, Reinforcement Learning, Statistical Machine Learning, Statistical Programming, Statistical Visualization, Supply Chain and Logistics, Theoretical Computer Science

      4.6

      (913 条评论)

      Intermediate · Professional Certificate · 3+ Months

    • Placeholder
      IBM

      IBM

      IBM Introduction to Machine Learning

      您将获得的技能: Algorithms, Analysis, Applied Machine Learning, Business Analysis, Computer Programming, Computer Vision, Data Analysis, Data Management, Data Structures, Data Visualization, Deep Learning, Dimensionality Reduction, Experiment, Exploratory Data Analysis, Feature Engineering, General Statistics, Linear Algebra, Machine Learning, Machine Learning Algorithms, Mathematics, Probability & Statistics, Python Programming, Regression, Statistical Machine Learning, Statistical Programming, Supply Chain and Logistics, Theoretical Computer Science

      4.6

      (857 条评论)

      Intermediate · Specialization · 3+ Months

    • Placeholder
      Johns Hopkins University

      Johns Hopkins University

      Biostatistics in Public Health

      您将获得的技能: Algebra, Analysis, Biostatistics, Econometrics, Experiment, Feature Engineering, General Statistics, Hypothesis, Hypothesis Testing, Machine Learning, Mathematics, Probability & Statistics, Probability Distribution, Regression, Statistical Hypothesis Testing, Supply Chain and Logistics

      4.8

      (1.8k 条评论)

      Beginner · Specialization · 3+ Months

    与 logistic regression 相关的搜索

    logistic regression with numpy and python
    logistic regression for classification using julia
    logistic regression in r for public health
    logistic regression&application as classification algorithm
    logistic regression with python and numpy
    logistic regression 101: us household income classification
    predictive modeling with logistic regression using sas
    predict ad clicks using logistic regression and xg-boost
    1…4567

    总之,这是我们最受欢迎的 logistic regression 门课程中的 10 门

    • Predictive Modeling and Analytics: University of Colorado Boulder
    • Data Science Fundamentals: University of California, Irvine
    • Predictive Modeling, Model Fitting, and Regression Analysis: University of California, Irvine
    • Deep Neural Networks with PyTorch: IBM
    • Inferential Statistics: University of Amsterdam
    • Using R for Regression and Machine Learning in Investment: Sungkyunkwan University
    • Data Modeling and Regression Analysis in Business: University of Illinois at Urbana-Champaign
    • Supply Chain Analytics: Rutgers the State University of New Jersey
    • Business Analytics: University of Pennsylvania
    • IBM Machine Learning: IBM

    您可以在 Probability And Statistics 中学到的技能

    R 语言程序设计(中文版) (19)
    推断 (16)
    线性回归 (12)
    统计分析 (12)
    统计推断 (11)
    回归分析 (10)
    生物统计学 (9)
    贝叶斯定理 (7)
    逻辑回归 (7)
    概率分布 (7)
    贝叶斯统计 (6)
    医学统计 (6)

    关于 Logistic Regression 的常见问题

    • Logistic regression is a technique used in statistics that allows people to estimate the probability of something happening based on existing data they have about that event taking place before. Mathematical models are used often in science and engineering disciplines to explain concepts using mathematical language, and one of these models is logical regression. Logistic regression works using binary data, meaning there are only two possible outcomes for the event: It takes place, or it doesn’t take place. To figure out the probability of these two outcomes, logistic regression uses equations that calculate odds ratios — the odds that something will happen or it won’t. This predictive modeling tool plays a large role not only in statistics but also in machine learning, which involves computers learning information that they haven’t explicitly been programmed to process.‎

    • If you’re considering going into a career field that works with data, software or mathematics, logical regression is a valuable area of study to focus on. Logistic regression becomes an important step of the programming process when you’re building software that deals with predictive modeling or data analysis. And, if you’re interested in enhancing your understanding of machine learning, logistic regression is an essential. When you understand modeling with logical regression, you can progress more easily to the complex models involved with machine learning while learning how to best prepare data for processing.‎

    • A career as a data scientist or data analyst gives you the opportunity to apply your knowledge of logistic regression, but you’ll also frequently draw upon your skills in this arena if you want to go into the field of machine learning. Although these careers are relatively broad, working with machine learning and logistic regression is also possible in a variety of specialties you’ll find in software engineering, computational linguistics and software development. As you begin to learn more about logistic regression while taking online classes, you may discover a particular area of interest you want to explore — and your new skills can help you discover more.‎

    • Taking online courses about logistic regression can give you the knowledge you need to progress in your field or start fresh. In your career as a data scientist or analyst, you know the importance of statistical approaches and the variety of data-modeling techniques you utilize on a regular basis. But if you’re ready to dig deeper into these concepts to boost your understanding and put new ideas and skills into practice, taking online courses about logistic regression can get you where you want to go. If you’re starting with the basics, take a ground-up approach with introductory courses that create a solid foundation for future learning. Or, if you’re looking to supplement your existing knowledge base with a greater understanding of logistic regression, try courses that help you learn the concept’s role in machine learning and programming software for predictive modeling. You’ll appreciate your newfound comprehension of these innovative ideas — and you’ll love the freedom to participate in online courses when and where it’s most convenient for you.‎

    此常见问题解答内容仅供参考。建议学生多做研究,确保所追求的课程和其他证书符合他们的个人、专业和财务目标。
    其他可浏览的主题
    Placeholder
    艺术与人文
    338 课程
    Placeholder
    商务
    1095 课程
    Placeholder
    计算机科学
    668 课程
    Placeholder
    数据科学
    425 课程
    Placeholder
    信息技术
    145 课程
    Placeholder
    健康
    471 课程
    Placeholder
    数学和逻辑
    70 课程
    Placeholder
    个人发展
    137 课程
    Placeholder
    物理科学与工程
    413 课程
    Placeholder
    社会科学
    401 课程
    Placeholder
    语言学习
    150 课程

    Coursera Footer

    开拓职业生涯或促进职业发展

    • Google 数据分析师
    • Google 项目管理
    • Google UX 设计
    • Google IT 支持
    • IBM 数据科学
    • IBM 数据分析师
    • 使用 Excel 和 R 的 IBM 数据分析
    • IBM Cybersecurity Analyst
    • IBM 数据工程
    • IBM 全栈云开发人员
    • Facebook 社交媒体营销
    • Facebook 市场营销分析
    • Salesforce 销售发展代表
    • Salesforce 销售运营
    • 直觉簿记
    • 备考 Google Cloud 认证:云架构师
    • 备考 Google Cloud 认证:云数据工程师
    • 开启您的职业生涯
    • 准备证书
    • 开拓职业生涯

    浏览热门主题

    • 免费课程
    • 学习语言
    • python
    • Java
    • 网页设计
    • SQL
    • Cursos Gratis
    • Microsoft Excel
    • 项目管理
    • 网络安全
    • 人力资源
    • 数据科学免费课程
    • 说英语
    • 内容写作
    • 全栈网络开发
    • 人工智能
    • C 语言程序设计
    • 沟通技能
    • 区块链
    • 查看全部课程

    热门课程和文章

    • 适用于数据科学团队的技能
    • 数据驱动的决策
    • 软件工程技能
    • 工程团队所需的软技能
    • 管理技能
    • 营销技能
    • 销售团队所需的技能
    • 产品经理技能
    • 财务技能
    • 英国的热门数据科学课程
    • Beliebte Technologiekurse in Deutschland
    • 热门网络安全证书
    • 热门 IT 证书
    • 热门 SQL 证书
    • 营销经理职业指南
    • 项目经理职业指南
    • Python 程序设计技能
    • Web 开发者职业指南
    • 数据分析师技能
    • 用户体验设计师方面的技能

    在线获得学位或证书

    • MasterTrack® 证书
    • 专业证书
    • 大学证书
    • MBA 和商学学位
    • Data Science Degrees
    • Computer Science Degrees
    • 数据分析师学位
    • 公共卫生学位
    • 社会科学学位
    • 管理学位
    • 欧洲顶级大学学位
    • 硕士学位
    • 学士学位
    • 具有成绩录取途径的学位
    • 学士学位课程
    • 什么是学士学位?
    • 取得硕士学位需要多长时间?
    • 在线获取 MBA 有什么价值?
    • 报名研究生院的 7 种付费方式
    • 查看所有证书

    Coursera

    • 关于
    • 我们提供的内容
    • 管理团队
    • 工作机会
    • 目录
    • Coursera Plus
    • 专业证书
    • MasterTrack® 证书
    • 学位
    • 企业版
    • 政府版
    • 面向校园
    • 成为合作伙伴
    • 新冠疫情响应

    社区

    • 学生
    • 合作伙伴
    • 开发者
    • Beta 测试人员
    • 专业译员
    • 博客
    • 技术博客
    • 教学中心

    更多

    • 媒体
    • 投资者
    • 条款
    • 隐私
    • 帮助
    • 内容访问
    • 联系我们
    • 文章
    • 目录
    • 附属公司
    随时随地学习
    通过 App Store 下载通过 Google Play 获取
    Placeholder
    © 2022 Coursera Inc.保留所有权利。
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder