课程信息

65,074 次近期查看

学生职业成果

67%

完成这些课程后已开始新的职业生涯

57%

通过此课程获得实实在在的工作福利
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
第 4 门课程(共 4 门)
可灵活调整截止日期
根据您的日程表重置截止日期。
高级
完成时间大约为13 小时
英语(English)
字幕:英语(English), 法语(French), 阿拉伯语(Arabic), 中文(简体)

学生职业成果

67%

完成这些课程后已开始新的职业生涯

57%

通过此课程获得实实在在的工作福利
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
第 4 门课程(共 4 门)
可灵活调整截止日期
根据您的日程表重置截止日期。
高级
完成时间大约为13 小时
英语(English)
字幕:英语(English), 法语(French), 阿拉伯语(Arabic), 中文(简体)

提供方

IBM 徽标

IBM

教学大纲 - 您将从这门课程中学到什么

1

1

完成时间为 3 小时

Week 1 - Identify DataSet and UseCase

完成时间为 3 小时
1 个视频 (总计 2 分钟), 7 个阅读材料, 2 个测验
1 个视频
7 个阅读材料
A warm welcome10分钟
Overview of Architectural Methodologies for DataScience10分钟
Lightweight IBM Cloud Garage Method for Data Science10分钟
Data Sources and Use Cases10分钟
Initial Data Exploration10分钟
Architectural Decisions Document (ADD)10分钟
Process Model Guidelines10分钟
1 个练习
Milestones Checklist Week 1
2

2

完成时间为 3 小时

Week 2 - ETL and Feature Creation

完成时间为 3 小时
3 个阅读材料
3 个阅读材料
Extract Transform Load (ETL)10分钟
Data Cleansing10分钟
Feature Engineering10分钟
1 个练习
Milestones Checklist Week 2
3

3

完成时间为 2 小时

Week 3 - Model Definition and Training

完成时间为 2 小时
2 个阅读材料
2 个阅读材料
Model Definition10分钟
Model Training10分钟
1 个练习
Milestones Checklist Week 3
4

4

完成时间为 5 小时

Model Evaluation, Tuning, Deployment and Documentation

完成时间为 5 小时
5 个阅读材料
5 个阅读材料
Model Evaluation10分钟
Model Deployment10分钟
Data Product (optional)10分钟
Create ADD - Architectural Decisions Document10分钟
Create a Video of your final presentation10分钟
2 个练习
Milestones Checklist Week 4
Opt-in to receive your badge!

审阅

来自ADVANCED DATA SCIENCE CAPSTONE的热门评论

查看所有评论

关于 Advanced Data Science with IBM 专项课程

As a coursera certified specialization completer you will have a proven deep understanding on massive parallel data processing, data exploration and visualization, and advanced machine learning & deep learning. You'll understand the mathematical foundations behind all machine learning & deep learning algorithms. You can apply knowledge in practical use cases, justify architectural decisions, understand the characteristics of different algorithms, frameworks & technologies & how they impact model performance & scalability. If you choose to take this specialization and earn the Coursera specialization certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging....
Advanced Data Science with IBM

常见问题

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

还有其他问题吗?请访问 学生帮助中心