课程信息
4.9
12 个评分
4 个审阅
专项课程

第 4 门课程(共 4 门)

100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
高级

高级

完成时间(小时)

完成时间大约为13 小时

建议:4 hours/week...
可选语言

英语(English)

字幕:英语(English), 法语(French)
专项课程

第 4 门课程(共 4 门)

100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
高级

高级

完成时间(小时)

完成时间大约为13 小时

建议:4 hours/week...
可选语言

英语(English)

字幕:英语(English), 法语(French)

教学大纲 - 您将从这门课程中学到什么

1
完成时间(小时)
完成时间为 3 小时

Week 1 - Identify DataSet and UseCase

In this module, the basic process model used for this capstone project is introduced. Furthermore, the learner is required to identify a practical use case and data set...
Reading
1 个视频 (总计 2 分钟), 6 个阅读材料, 2 个测验
Video1 个视频
Reading6 个阅读材料
A warm welcome10分钟
Overview of Architectural Methodologies for DataScience10分钟
Lightweight IBM Cloud Garage Method for Data Science10分钟
Data Sources and Use Cases10分钟
Initial Data Exploration10分钟
Architectural Decisions Document (ADD)10分钟
Quiz1 个练习
Milestones Checklist Week 10
2
完成时间(小时)
完成时间为 3 小时

Week 2 - ETL and Feature Creation

This module emphasizes on the importance of ETL, data cleansing and feature creation as a preliminary step in ever data science project ...
Reading
3 个阅读材料, 2 个测验
Reading3 个阅读材料
Extract Transform Load (ETL)10分钟
Data Cleansing10分钟
Feature Engineering10分钟
Quiz1 个练习
Milestones Checklist Week 20
3
完成时间(小时)
完成时间为 2 小时

Week 3 - Model Definition and Training

This module emphasizes on model selection based on use case and data set. It is important to understand how those two factors impact choice of a useful model algorithm. ...
Reading
2 个阅读材料, 2 个测验
Reading2 个阅读材料
Model Definition10分钟
Model Training10分钟
Quiz1 个练习
Milestones Checklist Week 30
4
完成时间(小时)
完成时间为 5 小时

Model Evaluation, Tuning, Deployment and Documentation

One a model is trained it is important to assess its performance using an appropriate metric. In addition, once the model is finished, it has to be made consumable by business stakeholders in an appropriate way ...
Reading
5 个阅读材料, 3 个测验
Reading5 个阅读材料
Model Evaluation10分钟
Model Deployment10分钟
Data Product (optional)10分钟
Create ADD - Architectural Decisions Document10分钟
Create a Video of your final presentation10分钟
Quiz1 个练习
Milestones Checklist Week 40

讲师

Avatar

Romeo Kienzler

Chief Data Scientist, Course Lead
IBM Watson IoT

关于 IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

关于 Advanced Data Science with IBM 专项课程

As a coursera certified specialization completer you will have a proven deep understanding on massive parallel data processing, data exploration and visualization, and advanced machine learning & deep learning. You'll understand the mathematical foundations behind all machine learning & deep learning algorithms. You can apply knowledge in practical use cases, justify architectural decisions, understand the characteristics of different algorithms, frameworks & technologies & how they impact model performance & scalability. If you choose to take this specialization and earn the Coursera specialization certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging....
Advanced Data Science with IBM

常见问题

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

还有其他问题吗?请访问 学生帮助中心