El aprendizaje de máquinas es una rama de la inteligencia artificial dedicada al estudio de métodos para dotar a los agentes artificiales de la capacidad de aprender a partir de ejemplos y/o experiencia. Los métodos de aprendizaje de máquinas pueden generar modelos de problemas complejos a través de instancias específicas, los cuales son capaces de generalizar y/o adaptarse a situaciones nuevas. Estos modelos han permitido llevar a cabo muchas nuevas aplicaciones en áreas muy diversas como generación de descripciones de imágenes, predicción de readmisión hospitalaria o detección de partículas subatómicas. En la actualizada frecuentemente interactuamos con modelos de aprendizaje de máquinas en diversas actividades de nuestra vida cotidiana. Por ejemplo, cuando utilizamos el teclado virtual en nuestros teléfonos móviles, un modelo de aprendizaje de máquinas trata de predecir la siguiente palabra que queremos escribir a partir de nuestro patrón de escritura y la de otros usuarios. De igual manera, al realizar una búsqueda en Internet, un modelo de aprendizaje de máquinas identifica los documentos más relevantes a ser mostrados de todos los posibles documentos usando nuestro historial de búsqueda. Al tomar una foto con nuestra cámara digital, un modelo de aprendizaje de máquinas detecta los rostros en la escena para poder enfocarlos de forma adecuada.
Aprendizaje de máquinas
墨西哥国立自治大学课程信息
可灵活调整截止日期
根据您的日程表重置截止日期。
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
完成时间大约为4 小时
西班牙语(Spanish)
字幕:西班牙语(Spanish)
可灵活调整截止日期
根据您的日程表重置截止日期。
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
完成时间大约为4 小时
西班牙语(Spanish)
字幕:西班牙语(Spanish)
提供方

墨西哥国立自治大学
La Universidad Nacional Autónoma de México fue fundada el 21 de septiembre de 1551 con el nombre de la Real y Pontificia Universidad de México. Es la más grande e importante universidad de México e Iberoamérica. Tiene como propósito primordial estar al servicio del país y de la humanidad, formar profesionistas útiles a la sociedad, organizar y realizar investigaciones, principalmente acerca de las condiciones y problemas nacionales, y extender con la mayor amplitud posible, los beneficios de la cultura.
授课大纲 - 您将从这门课程中学到什么
完成时间为 10 分钟
Introducción
完成时间为 10 分钟
1 个阅读材料
完成时间为 1 小时
Redes neuronales
完成时间为 1 小时
完成时间为 3 小时
Aprendizaje sin supervisión
完成时间为 3 小时
常见问题
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
有助学金吗?
还有其他问题吗?请访问 学生帮助中心。