Chevron Left
返回到 贝叶斯统计

学生对 杜克大学 提供的 贝叶斯统计 的评价和反馈

3.9
680 个评分
212 条评论

课程概述

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction. We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."...

热门审阅

RR

Sep 21, 2017

Great course. Difficult to apprehend sometimes as the Frequentist paradigm is learned first but once you get it, it is really amazing to see the believe update in action with data.

GH

Apr 10, 2018

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

筛选依据:

101 - 贝叶斯统计 的 125 个评论(共 204 个)

创建者 KALYESUBULA M

Jun 03, 2017

Learnt a lot. Though the subject material was hard to grasp first hand, it is good that instructor was readily available to help us through.

创建者 Adam A

Aug 25, 2017

An interesting and challenging course, would be better with more real examples and explanation as some of the material felt rushed

创建者 Marwa A E K M A Z

Jan 07, 2020

It's a good one, but not as previous courses. Week 3 isn't well explained as other weeks. Hope it can be further improved

创建者 Hanyu Z

Dec 08, 2016

The material is good. However, there is no support from the instructors to answer our questions in the discussion forum.

创建者 Niels R

Jul 06, 2019

This course through the material too fast. The content should have been spread out over two courses in my opinion.

创建者 Emmanouil K

Aug 16, 2017

This is a very interesting topic. Lectures in weeks 3 and 4 could use some work.

创建者 Vicken A

Dec 29, 2016

Bayesian stats is a broad topic. Learners would benefit from more material.

创建者 Raja F Z

May 23, 2020

this Course very informative and bears an applied approach for learning.

创建者 Jaime R

Nov 08, 2018

Theorethical backdrop is a bit excessive on an R focused course

创建者 Liew H P

Jan 17, 2019

This course is challenging and well-presented!

创建者 José M C

Mar 22, 2017

Good content but sometimes it gets confusing.

创建者 陈昊

Nov 15, 2017

Harder than former courses but great!

创建者 George G R

May 06, 2017

The classes are good.

创建者 sohini m

Oct 27, 2017

It was nice

创建者 Haixu L

Jan 19, 2018

The material is interesting. However some of the points are not presented in a way that I can understand.

The course is less coherent than the previous ones.

This course gave me an impression that the materials are not well organized. Basically, the course organizers present a lot of concepts and materials to you without background introductions. I know there are a lot to cover in 5 weeks. The organizers should think this through about how to present a lot of information in a short period of time. Maybe put the less important information in a lecture notes or something could be better.

创建者 Sander t C

Jun 22, 2020

This course was way harder than the three that came before. It feels as if courses 1 to 3 did not prepare me for this one at all. The lecturers throw in a lot of formulas that they just expect us to understand with ease. Whereas the first three courses explained everything in great detail, even the simplest things, this course assumes you immediately understand everything they throw at you. The quizzes also ask for small details mentioned during 2 seconds of one of the many videos. Still, the course is doable if you push through and apply what you learn in the Rstudio-assignments.

创建者 Jeff M

May 09, 2019

Overall I think there are better options available for learning bayesian statistics. The pacing and structure of the course both felt off to me, spending too much time on some things (conjugacy in particular) and breezing past many other things too quickly (particularly numerical methods). I also thought that it would have been more helpful to learn to perform many of the analyses from scratch so that they could be better understood, rather than relying so heavily on the accompanying statsR package.

创建者 schlies

May 31, 2019

It seems like this course contains good information, but there's a huge gap in the material as taught by some of the instructors. It seems like one of the instructors in particular assumes you're already familiar with material that's not covered in the rest of the course. These parts of the lectures rehearse math and code in a very formulaic way which conveys almost no intuition or understanding of the subject matter. However, the labs a pretty good.

创建者 Bo L

Dec 08, 2017

This course is different from the first 3 courses in this specialization. I only recommend this course to people who have sound knowledge in calculus and some background knowledge in Bayesian Statistics. Personally, the pace of the videos is fast and the instructors use very technical terms. Although the course is not intended to give in-depth explanation into Baysian statistics, how the content is set up tend to be confusing.

创建者 Thomas J H

Aug 07, 2017

This course has a much steeper learning curve than the first three, and goes from theory to examples in action rather than vice versa. I think the Professors involved are super-smart and more than just qualified, but the teaching method is a noted departure from the first three courses in this series. Think this would work better as two courses. Slow things down a bit, and give more R exercises and examples.

创建者 Andreas Z

Mar 27, 2018

This introduction to Bayesian statistics familiarises you with the fundamental concepts. The difficulty is that the material covered is non-trivial and probably cannot be squeezed into the time allocated. Is is very difficult to follow the lectures and not getting lost. Thus, you need to take lot of time and maybe complement this course additional ones in order to understand the material and profit from it.

创建者 Etienne T

Nov 20, 2017

This course delved too deep in the math that were not always explained as good as the other courses in this specialization. Really liked the prof from the other courses (Mine), she really explained well... Didn't like the teaching style of the prof in this course unfortunately. Didn't have a good reference book that we could refer to like the other courses. This was really a pain.

创建者 Erik B

Feb 26, 2017

After 3 great courses in this specialization, this one was disappointing. The content just isn't explained well in the videos. The Labs were fine. I'm sorry but the course seemed rushed, and it isn't great marketing for the Bayesian approach. As a consequence, I am now not sure if I want to do the capstone......

创建者 Elvis S R

Sep 10, 2019

I don't think the level of this course is in continuity with the previous three of the specialization. The first average of the classes are as usual, but then the topics become harder and equation-oriented. Less examples are developed and I wasn't able to learn everything as it happened in the previous courses.

创建者 Dgo D

May 22, 2017

I consider that you need to change the scope of this last course. A book or a reading material will help to better understand the concepts.

I'm conscient that Bayesian statistics is more mathematics intensive, but you should find a way to make this course friendlier for beginner students in Bayesian statistics.