Chevron Left
返回到 获取和整理数据

学生对 约翰霍普金斯大学 提供的 获取和整理数据 的评价和反馈

4.6
7,581 个评分
1,223 条评论

课程概述

Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. The course will cover obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the basics of data cleaning and how to make data “tidy”. Tidy data dramatically speed downstream data analysis tasks. The course will also cover the components of a complete data set including raw data, processing instructions, codebooks, and processed data. The course will cover the basics needed for collecting, cleaning, and sharing data....

热门审阅

HS
May 2, 2020

This course provides an introduction of some important concepts and tools on a very important aspect of data science: cleaning and organizing data before any analysis. A must for any data scientist.

DH
Feb 1, 2016

Easy, mostly instructive Course. The Assignments and quizzes are quite good, and illustrates the lessons very well.\n\nSee the videos for general presentation, but use the energy on the excersizes.

筛选依据:

101 - 获取和整理数据 的 125 个评论(共 1,182 个)

创建者 Balaji P

Feb 4, 2018

The course is an excellent introduction to the dplyr package and string manipulation in r. I thought the assignment at the end of the course was a little vague and hard to understand

创建者 B S

Nov 14, 2017

Great course if you are working with R. I learned how to load data in R and various handy features (plyr, dplyr, lubridate packages) to clean data before starting the data analysis.

创建者 BOUZENNOUNE Z E

Mar 3, 2018

Amazing, you get to see almost every aspect of data science.

It is true that you won't get deeepeeeer, but this course allow you to not fear any kind of data science. That's amazing.

创建者 Andrew B

Oct 16, 2017

This course is very enlightening. The techniques demonstrated in this course are critical for gathering raw data from various sources and turning it into useful data for analysis.

创建者 Kelly S

May 22, 2019

I really liked this course and believe that my work, although seemingly noob-ish, will get much better as I see others works from the peer review and examples noted in the lessons.

创建者 Sudhin K B

Mar 17, 2018

So knowledgeable and interesting course. I have learned much about data cleaning and getting from different sources. Finally thanks to coursera team for giving us the opportunity.

创建者 Charles K

Feb 6, 2016

This is a very well put together course. It teaches the basics of data cleansing and how to setup data for modeling--by far the most foundational technical aspect of data analysis.

创建者 Alexander R

Sep 22, 2018

How to get a clean the data is a very important knowledge for the future data scientist and data analyst. For me this course was very important I very recommend take this course.

创建者 Eugene K

Jan 7, 2018

Great course on tidy data. Very useful in understanding how to use different types of data (csv, XML, API) and how to manipulate the data so that you can perform analyses on it.

创建者 Mohammad A

Jun 16, 2018

Excellent course, and quizzes and lecture were very teaching. But some materials needs to be updated up to date , like subsetting columns in data.table the slides were absolute.

创建者 João F

Oct 17, 2017

Great ready-to-use skills for common tasks of a Data Scientist. Lays the foundations for further self-development in the topics taught. Heavy on R. Very challenging assignments.

创建者 Amsalu B

May 23, 2020

This specific course is good but when it comes to the assignments, it's more confused than the course work and the description of the assignment is unclear too, at least to me.

创建者 Jonathan D B

Feb 1, 2016

really thorough class... come prepared to learn and be patient as your going to get your hands pretty dirty reading data, cleaning it and manipulating the result sets with R

创建者 Luis E B P

Jan 8, 2019

I think this course is really good, the instructors give you a lot of tools to handle data bases! I would recomend this course to any person that wants to learn about this.

创建者 Joyce

Aug 26, 2017

Super useful, there are so many raw data in the practical world, which are needed to be cleaned, so that the analysts and other people can easily get information from data.

创建者 Christopher R

Feb 2, 2017

I use so much of what I've learned here on a day to day basis! Using the suite of functions from ggplot, dplyr, plyr and others has greatly reduced my data management time.

创建者 Satish V

Jul 22, 2018

This course was very useful, informative and interesting. However, I did feel that the course assignment seems to be, perhaps purposefully, but a bit unnecessarily vague.

创建者 Anand R

Jul 29, 2020

Course was very useful and learnt about how to handle the data especially raw data and also fetching them with various aspects. Thanks Jeff and team and also coursera

创建者 Sreemoyee M

Jan 15, 2020

The challenging quizzes and assignments are a main reason why this course is so great! This course truly ensures that you truly understand and implement the videos.

创建者 Jorge B S

Aug 6, 2019

I have found this course very useful to gain a nice overview of the main tools to obtain and clean data. Moreover, for me it was challenging, which is always a plus.

创建者 Diego T B

Nov 7, 2017

Very interesting. Global view to process Data and try to explain with very useful techniques the processing or cleaning data with regular expressions. I enjoyed it!

创建者 Johann R

May 28, 2017

A great course in which many important concepts and techniques are covered. It also covers many handy tools/libraries that one can use to clean and manipulate data.

创建者 Mauro S d S

Mar 5, 2017

Very intense and covering a lot of material - After about an year from having the course and with a different understanding, this is probably the course to revisit.

创建者 John J O G

Jan 25, 2017

Muy buen curso y con buena evaluación de los temas mediante asignaciones varias con estudios en el mundo real que lo preparan para estar analizando trabajos reales

创建者 Dany M

Oct 24, 2017

Great course! I loved it. It's just informal enough and rigorous enough. The pace is enjoyable and the experience of the instructor carries well.

Highly recommend.