课程信息
4.0
70 个评分
13 个审阅
专项课程
100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
高级

高级

完成时间(小时)

完成时间大约为27 小时

建议:5 weeks of study...
可选语言

英语(English)

字幕:英语(English)
专项课程
100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
高级

高级

完成时间(小时)

完成时间大约为27 小时

建议:5 weeks of study...
可选语言

英语(English)

字幕:英语(English)

教学大纲 - 您将从这门课程中学到什么

1
完成时间(小时)
完成时间为 3 小时

Introduction to image processing and computer vision

Welcome to the "Deep Learning for Computer Vision“ course! In the first introductory week, you'll learn about the purpose of computer vision, digital images, and operations that can be applied to them, like brightness and contrast correction, convolution and linear filtering. These simple image processing methods solve as building blocks for all the deep learning employed in the field of computer vision. Let’s get started!...
Reading
8 个视频 (总计 54 分钟), 2 个测验
Video8 个视频
Digital images3分钟
Structure of human eye and vision6分钟
Color models15分钟
Image processing goals and tasks2分钟
Contrast and brightness correction5分钟
Image convolution7分钟
Edge detection8分钟
Quiz1 个练习
Basic image processing10分钟
2
完成时间(小时)
完成时间为 4 小时

Convolutional features for visual recognition

Module two revolves around general principles underlying modern computer vision architectures based on deep convolutional neural networks. We’ll build and analyse convolutional architectures tailored for a number of conventional problems in vision: image categorisation, fine-grained recognition, content-based retrieval, and various aspect of face recognition. On the practical side, you’ll learn how to build your own key-points detector using a deep regression CNN. ...
Reading
12 个视频 (总计 91 分钟), 2 个测验
Video12 个视频
AlexNet, VGG and Inception architectures11分钟
ResNet and beyond10分钟
Fine-grained image recognition5分钟
Detection and classification of facial attributes6分钟
Content-based image retrieval7分钟
Computing semantic image embeddings using convolutional neural networks8分钟
Employing indexing structures for efficient retrieval of semantic neighbors9分钟
Face verification6分钟
The re-identification problem in computer vision5分钟
Facial keypoints regression6分钟
CNN for keypoints regression5分钟
Quiz1 个练习
Convolutional features for visual recognition24分钟
3
完成时间(小时)
完成时间为 3 小时

Object detection

In this week, we focus on the object detection task — one of the central problems in vision. We start with recalling the conventional sliding window + classifier approach culminating in Viola-Jones detector. Tracing the development of deep convolutional detectors up until recent days, we consider R-CNN and single shot detector models. Practice includes training a face detection model using a deep convolutional neural network....
Reading
13 个视频 (总计 46 分钟), 2 个测验
Video13 个视频
Sliding windows3分钟
HOG-based detector2分钟
Detector training3分钟
Viola-Jones face detector5分钟
Attentional cascades and neural networks3分钟
Region-based convolutional neural network3分钟
From R-CNN to Fast R-CNN5分钟
Faster R-CNN4分钟
Region-based fully-convolutional network2分钟
Single shot detectors3分钟
Speed vs. accuracy tradeoff1分钟
Fun with pedestrian detectors1分钟
Quiz1 个练习
Object Detection16分钟
4
完成时间(小时)
完成时间为 4 小时

Object tracking and action recognition

The fourth module of our course focuses on video analysis and includes material on optical flow estimation, visual object tracking, and action recognition. Motion is a central topic in video analysis, opening many possibilities for end-to-end learning of action patterns and object signatures. You will learn to design computer vision architectures for video analysis including visual trackers and action recognition models....
Reading
11 个视频 (总计 74 分钟), 2 个测验
Video11 个视频
Optical flow5分钟
Deep learning in optical flow estimation5分钟
Visual object tracking5分钟
Examples of visual object tracking methods13分钟
Multiple object tracking5分钟
Examples of multiple object tracking methods8分钟
Introduction to action recognition6分钟
Action classification7分钟
Action classification with convolutional neural networks5分钟
Action localization6分钟
Quiz1 个练习
Video Analysis16分钟
4.0
13 个审阅Chevron Right

热门审阅

创建者 SJJun 12th 2018

Excellent course! Quiz questions are conceptual and challenging and assignments are pretty rigorous and 100% practical application oriented.

讲师

Avatar

Anton Konushin

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Alexey Artemov

Senior Lecturer
HSE Faculty of Computer Science

关于 National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communications, IT, mathematics, engineering, and more. Learn more on www.hse.ru...

关于 Advanced Machine Learning 专项课程

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings....
Advanced Machine Learning

常见问题

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

还有其他问题吗?请访问 学生帮助中心