This course is the second in a specialization for Machine Learning for Supply Chain Fundamentals. In this course, we explore all aspects of time series, especially for demand prediction. We'll start by gaining a foothold in the basic concepts surrounding time series, including stationarity, trend (drift), cyclicality, and seasonality. Then, we'll spend some time analyzing correlation methods in relation to time series (autocorrelation). In the 2nd half of the course, we'll focus on methods for demand prediction using time series, such as autoregressive models. Finally, we'll conclude with a project, predicting demand using ARIMA models in Python.
提供方


课程信息
Basic understanding of Python, Pandas, and Numpy.
您将学到的内容有
Building ARIMA models in Python to make demand predictions
Developing the framework for more advanced neural netowrks (such as LSTMs) by understanding autocorrelation and autoregressive models.
您将获得的技能
- Machine Learning
- Python Programming
- Autoregressive Integrated Moving Average (ARIMA)
- Time Series
- Demand Forecasting
Basic understanding of Python, Pandas, and Numpy.
提供方

LearnQuest
LearnQuest is the preferred training partner to the world’s leading companies, organizations, and government agencies. Our team boasts 20+ years of experience designing, developing and delivering a full suite industry-leading technology education classes and training solutions across the globe. Our trainers, equipped with expert industry experience and an unparalleled commitment to quality, facilitate classes that are offered in various delivery formats so our clients can obtain the training they need when and where they need it.
授课大纲 - 您将从这门课程中学到什么
A First Glance at Time Series
In this module, we'll get our feet wet with time series in Python. We'll start by getting familiar with where time series fits in to the machine learning landscape. Then, we'll learn about the main types of time series and their distinguishing factors, including period, frequency, and stationarity. After pausing to learn how to plot timeseries in Python, we'll explore the differences between seasonality and cyclicality.
Independence and Autocorrelation
In this module, we'll dive into the ideas behind autocorrelation and independence. We'll start by digging into the math of correlation and how it can be used to characterize the relationship between two variables. Next, we'll define its relationship to independence and explain where these ideas can be used. Finally, we'll combine correlation with time series attributes, such as trend, seasonality, and stationarity to derive autocorrelation. We'll go through both some of the theory behind autocorrelation, and how to code it in Python.
Regression and ARIMA Models
In this module, we'll start by reviewing some of the basic concepts behind linear regression. Then, we'll extend this knowledge to feed into lagged regression, an effective way to use regression techniques on time series. Once we have a solid foothold in basic and lagged regression, we'll explore modern methods such as ARIMA (autoregressive integrated moving average). All of this is building the framework for more advanced machine learning models such as LSTMs (long short-term memory network).
Final Project
In the final course project, we'll make demand predictions using ARIMA models.
关于 Machine Learning for Supply Chains 专项课程
This specialization is intended for students who wish to use machine language to analyze and predict product usage and other similar tasks. There is no specific prerequisite but some general knowledge of supply chain will be helpful, as well as general statistics and calculus.

常见问题
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
有助学金吗?
还有其他问题吗?请访问 学生帮助中心。