Cette formation vous apprendra à construire des modèles pour le langage naturel, l’audio et les autres données de séquence. Grâce à l’apprentissage profond, les algorithmes de séquence fonctionnent beaucoup mieux qu’il y a deux ans ; nous disposons donc de nombreuses applications très intéressantes en matière de reconnaissance vocale, de synthèse musicale, de chatbots, de traduction automatique, de compréhension naturelle du langage, etc.

Modèles de séquence
deeplearning.ai课程信息
您将获得的技能
- Machine Translation
- Word Embedding
- Combination
- Deep Learning
提供方

deeplearning.ai
DeepLearning.AI is an education technology company that develops a global community of AI talent.
授课大纲 - 您将从这门课程中学到什么
Réseaux neuronaux récurrents
Découvrez les réseaux neuronaux récurrents. Ce type de modèle s’est avéré extrêmement performant sur les données temporelles. Il comporte plusieurs variantes, y compris les LSTM, les GRU et les RNN bidirectionnels, que vous allez découvrir dans cette section.
Traitement automatique du langage naturel et prolongements lexicaux
Le traitement du langage naturel avec l'apprentissage profond est une combinaison importante. En utilisant des représentations de vecteurs de mots et des couches de prolongements, vous pouvez former des réseaux neuronaux récurrents avec des performances exceptionnelles, dans une grande variété de secteurs. Des exemples d’applications sont l’analyse de sentiments, la reconnaissance d’entités nommées et la traduction automatique.
Modèles de séquence et mécanisme d’attention
Les modèles de séquence peuvent être améliorés à l’aide d’un mécanisme d’attention. Cet algorithme aidera votre modèle à comprendre où celui-ci doit focaliser son attention, compte tenu d’une séquence d’entrées. Cette semaine, vous apprendrez également à reconnaître la parole et à gérer les données audio.
常见问题
我什么时候能够访问课程视频和作业?
我购买证书后会得到什么?
有助学金吗?
还有其他问题吗?请访问 学生帮助中心。