课程信息

245,213 次近期查看

学生职业成果

50%

完成这些课程后已开始新的职业生涯

48%

通过此课程获得实实在在的工作福利
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
可灵活调整截止日期
根据您的日程表重置截止日期。
中级
完成时间大约为19 小时
英语(English)
字幕:英语(English)

您将学到的内容有

  • Implement mathematical concepts using real-world data

  • Derive PCA from a projection perspective

  • Understand how orthogonal projections work

  • Master PCA

您将获得的技能

Dimensionality ReductionPython ProgrammingLinear Algebra

学生职业成果

50%

完成这些课程后已开始新的职业生涯

48%

通过此课程获得实实在在的工作福利
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
可灵活调整截止日期
根据您的日程表重置截止日期。
中级
完成时间大约为19 小时
英语(English)
字幕:英语(English)

提供方

伦敦帝国学院 徽标

伦敦帝国学院

教学大纲 - 您将从这门课程中学到什么

内容评分Thumbs Up80%(4,175 个评分)Info
1

1

完成时间为 5 小时

Statistics of Datasets

完成时间为 5 小时
8 个视频 (总计 27 分钟), 6 个阅读材料, 4 个测验
8 个视频
Welcome to module 141
Mean of a dataset4分钟
Variance of one-dimensional datasets4分钟
Variance of higher-dimensional datasets5分钟
Effect on the mean4分钟
Effect on the (co)variance3分钟
See you next module!27
6 个阅读材料
About Imperial College & the team5分钟
How to be successful in this course5分钟
Grading policy5分钟
Additional readings & helpful references5分钟
Set up Jupyter notebook environment offline10分钟
Symmetric, positive definite matrices10分钟
3 个练习
Mean of datasets15分钟
Variance of 1D datasets15分钟
Covariance matrix of a two-dimensional dataset15分钟
2

2

完成时间为 4 小时

Inner Products

完成时间为 4 小时
8 个视频 (总计 36 分钟), 1 个阅读材料, 5 个测验
8 个视频
Dot product4分钟
Inner product: definition5分钟
Inner product: length of vectors7分钟
Inner product: distances between vectors3分钟
Inner product: angles and orthogonality5分钟
Inner products of functions and random variables (optional)7分钟
Heading for the next module!35
1 个阅读材料
Basis vectors20分钟
4 个练习
Dot product10分钟
Properties of inner products20分钟
General inner products: lengths and distances20分钟
Angles between vectors using a non-standard inner product20分钟
3

3

完成时间为 4 小时

Orthogonal Projections

完成时间为 4 小时
6 个视频 (总计 25 分钟), 1 个阅读材料, 3 个测验
6 个视频
Projection onto 1D subspaces7分钟
Example: projection onto 1D subspaces3分钟
Projections onto higher-dimensional subspaces8分钟
Example: projection onto a 2D subspace3分钟
This was module 3!32
1 个阅读材料
Full derivation of the projection20分钟
2 个练习
Projection onto a 1-dimensional subspace25分钟
Project 3D data onto a 2D subspace40分钟
4

4

完成时间为 5 小时

Principal Component Analysis

完成时间为 5 小时
10 个视频 (总计 52 分钟), 5 个阅读材料, 2 个测验
10 个视频
Problem setting and PCA objective7分钟
Finding the coordinates of the projected data5分钟
Reformulation of the objective10分钟
Finding the basis vectors that span the principal subspace7分钟
Steps of PCA4分钟
PCA in high dimensions5分钟
Other interpretations of PCA (optional)7分钟
Summary of this module42
This was the course on PCA56
5 个阅读材料
Vector spaces20分钟
Orthogonal complements10分钟
Multivariate chain rule10分钟
Lagrange multipliers10分钟
Did you like the course? Let us know!10分钟
1 个练习
Chain rule practice20分钟

审阅

来自MATHEMATICS FOR MACHINE LEARNING: PCA的热门评论

查看所有评论

关于 数学在机器学习领域的应用 专项课程

For a lot of higher level courses in Machine Learning and Data Science, you find you need to freshen up on the basics in mathematics - stuff you may have studied before in school or university, but which was taught in another context, or not very intuitively, such that you struggle to relate it to how it’s used in Computer Science. This specialization aims to bridge that gap, getting you up to speed in the underlying mathematics, building an intuitive understanding, and relating it to Machine Learning and Data Science. In the first course on Linear Algebra we look at what linear algebra is and how it relates to data. Then we look through what vectors and matrices are and how to work with them. The second course, Multivariate Calculus, builds on this to look at how to optimize fitting functions to get good fits to data. It starts from introductory calculus and then uses the matrices and vectors from the first course to look at data fitting. The third course, Dimensionality Reduction with Principal Component Analysis, uses the mathematics from the first two courses to compress high-dimensional data. This course is of intermediate difficulty and will require Python and numpy knowledge. At the end of this specialization you will have gained the prerequisite mathematical knowledge to continue your journey and take more advanced courses in machine learning....
数学在机器学习领域的应用

常见问题

  • 讲座和作业的访问权限取决于您的注册类型。如果您以旁听模式参加课程,则可以免费查看大多数课程资料。要访问评分作业并获得证书,您需要在旁听期间或之后购买证书体验。如果看不到旁听选项:

    • 课程可能不提供旁听选项。您可以尝试免费试用,也可以申请助学金。
    • 课程可能会改为提供'完整课程,没有证书'。通过此选项,您可以查看所有课程材料、提交所要求的作业,以及获得最终成绩。这也意味着您将无法购买证书体验。
  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • 如果订阅,您可以获得 7 天免费试听,在此期间,您可以取消课程,无需支付任何罚金。在此之后,我们不会退款,但您可以随时取消订阅。请阅读我们完整的退款政策

  • 是的,Coursera 可以为无法承担费用的学生提供助学金。通过点击左侧“注册”按钮下的“助学金”链接可以申请助学金。您可以根据屏幕提示完成申请,申请获批后会收到通知。您需要针对专项课程中的每一门课程完成上述步骤,包括毕业项目。了解更多

  • You will need good python knowledge to get through the course.

  • This course is significantly harder and different in style: it uses more abstract concepts and requires much more programming experience than the other two courses. Therefore, when you complete the full specialization, you will be equipped with a much more diverse set of skills.

  • 此课程不提供大学学分,但部分大学可能会选择接受课程证书作为学分。查看您的合作院校,了解详情。Coursera 上的在线学位Mastertrack™ 证书提供获得大学学分的机会。

还有其他问题吗?请访问 学生帮助中心