课程信息

72,350 次近期查看
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
第 3 门课程(共 4 门)
可灵活调整截止日期
根据您的日程表重置截止日期。
中级

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode.

完成时间大约为30 小时
英语(English)
字幕:英语(English)

您将获得的技能

Artificial Intelligence (AI)Machine LearningReinforcement LearningFunction ApproximationIntelligent Systems
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
第 3 门课程(共 4 门)
可灵活调整截止日期
根据您的日程表重置截止日期。
中级

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode.

完成时间大约为30 小时
英语(English)
字幕:英语(English)

提供方

阿尔伯塔大学 徽标

阿尔伯塔大学

Alberta Machine Intelligence Institute 徽标

Alberta Machine Intelligence Institute

教学大纲 - 您将从这门课程中学到什么

内容评分Thumbs Up92%(1,310 个评分)Info
1

1

完成时间为 1 小时

Welcome to the Course!

完成时间为 1 小时
2 个视频 (总计 12 分钟), 2 个阅读材料
2 个视频
Meet your instructors!8分钟
2 个阅读材料
Read Me: Pre-requisites and Learning Objectives10分钟
Reinforcement Learning Textbook10分钟
完成时间为 6 小时

On-policy Prediction with Approximation

完成时间为 6 小时
13 个视频 (总计 69 分钟), 1 个阅读材料, 2 个测验
13 个视频
Generalization and Discrimination5分钟
Framing Value Estimation as Supervised Learning3分钟
The Value Error Objective4分钟
Introducing Gradient Descent7分钟
Gradient Monte for Policy Evaluation5分钟
State Aggregation with Monte Carlo7分钟
Semi-Gradient TD for Policy Evaluation3分钟
Comparing TD and Monte Carlo with State Aggregation4分钟
Doina Precup: Building Knowledge for AI Agents with Reinforcement Learning7分钟
The Linear TD Update3分钟
The True Objective for TD5分钟
Week 1 Summary4分钟
1 个阅读材料
Weekly Reading: On-policy Prediction with Approximation40分钟
1 个练习
On-policy Prediction with Approximation30分钟
2

2

完成时间为 8 小时

Constructing Features for Prediction

完成时间为 8 小时
11 个视频 (总计 52 分钟), 1 个阅读材料, 2 个测验
11 个视频
Generalization Properties of Coarse Coding5分钟
Tile Coding3分钟
Using Tile Coding in TD4分钟
What is a Neural Network?3分钟
Non-linear Approximation with Neural Networks4分钟
Deep Neural Networks3分钟
Gradient Descent for Training Neural Networks8分钟
Optimization Strategies for NNs4分钟
David Silver on Deep Learning + RL = AI?9分钟
Week 2 Review2分钟
1 个阅读材料
Weekly Reading: On-policy Prediction with Approximation II40分钟
1 个练习
Constructing Features for Prediction28分钟
3

3

完成时间为 8 小时

Control with Approximation

完成时间为 8 小时
7 个视频 (总计 41 分钟), 1 个阅读材料, 2 个测验
7 个视频
Episodic Sarsa in Mountain Car5分钟
Expected Sarsa with Function Approximation2分钟
Exploration under Function Approximation3分钟
Average Reward: A New Way of Formulating Control Problems10分钟
Satinder Singh on Intrinsic Rewards12分钟
Week 3 Review2分钟
1 个阅读材料
Weekly Reading: On-policy Control with Approximation40分钟
1 个练习
Control with Approximation40分钟
4

4

完成时间为 6 小时

Policy Gradient

完成时间为 6 小时
11 个视频 (总计 55 分钟), 1 个阅读材料, 2 个测验
11 个视频
Advantages of Policy Parameterization5分钟
The Objective for Learning Policies5分钟
The Policy Gradient Theorem5分钟
Estimating the Policy Gradient4分钟
Actor-Critic Algorithm5分钟
Actor-Critic with Softmax Policies3分钟
Demonstration with Actor-Critic6分钟
Gaussian Policies for Continuous Actions7分钟
Week 4 Summary3分钟
Congratulations! Course 4 Preview2分钟
1 个阅读材料
Weekly Reading: Policy Gradient Methods40分钟
1 个练习
Policy Gradient Methods45分钟

审阅

来自PREDICTION AND CONTROL WITH FUNCTION APPROXIMATION的热门评论

查看所有评论

关于 强化学习 专项课程

The Reinforcement Learning Specialization consists of 4 courses exploring the power of adaptive learning systems and artificial intelligence (AI). Harnessing the full potential of artificial intelligence requires adaptive learning systems. Learn how Reinforcement Learning (RL) solutions help solve real-world problems through trial-and-error interaction by implementing a complete RL solution from beginning to end. By the end of this Specialization, learners will understand the foundations of much of modern probabilistic artificial intelligence (AI) and be prepared to take more advanced courses or to apply AI tools and ideas to real-world problems. This content will focus on “small-scale” problems in order to understand the foundations of Reinforcement Learning, as taught by world-renowned experts at the University of Alberta, Faculty of Science. The tools learned in this Specialization can be applied to game development (AI), customer interaction (how a website interacts with customers), smart assistants, recommender systems, supply chain, industrial control, finance, oil & gas pipelines, industrial control systems, and more....
强化学习

常见问题

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • 如果订阅,您可以获得 7 天免费试听,在此期间,您可以取消课程,无需支付任何罚金。在此之后,我们不会退款,但您可以随时取消订阅。请阅读我们完整的退款政策

  • 是的,Coursera 可以为无法承担费用的学生提供助学金。通过点击左侧“注册”按钮下的“助学金”链接可以申请助学金。您可以根据屏幕提示完成申请,申请获批后会收到通知。您需要针对专项课程中的每一门课程完成上述步骤,包括毕业项目。了解更多

还有其他问题吗?请访问 学生帮助中心