This Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis. After completing this course you will have practical knowledge of crucial topics in statistics including - data gathering, summarizing data using descriptive statistics, displaying and visualizing data, examining relationships between variables, probability distributions, expected values, hypothesis testing, introduction to ANOVA (analysis of variance), regression and correlation analysis. You will take a hands-on approach to statistical analysis using Python and Jupyter Notebooks – the tools of choice for Data Scientists and Data Analysts.
本课程是 Data Science Fundamentals with Python and SQL 专项课程 专项课程的一部分
提供方

课程信息
您将学到的内容有
Write Python code to conduct various statistical tests including a T test, an ANOVA, and regression analysis.
Interpret the results of your statistical analysis after conducting hypothesis testing.
Calculate descriptive statistics and visualization by writing Python code.
Create a final project that demonstrates your understanding of various statistical test using Python and evaluate your peer's projects.
您将获得的技能
- Probability And Statistics
- Regression Analysis
- Data Visualization (DataViz)
- Statistical Hypothesis Testing
- Basic Descriptive Statistics
提供方

IBM
IBM is the global leader in business transformation through an open hybrid cloud platform and AI, serving clients in more than 170 countries around the world. Today 47 of the Fortune 50 Companies rely on the IBM Cloud to run their business, and IBM Watson enterprise AI is hard at work in more than 30,000 engagements. IBM is also one of the world’s most vital corporate research organizations, with 28 consecutive years of patent leadership. Above all, guided by principles for trust and transparency and support for a more inclusive society, IBM is committed to being a responsible technology innovator and a force for good in the world.
授课大纲 - 您将从这门课程中学到什么
Course Introduction and Python Basics
Welcome!
Introduction & Descriptive Statistics
This module will focus on introducing the basics of descriptive statistics - mean, median, mode, variance, and standard deviation. It will explain the usefulness of the measures of central tendency and dispersion for different levels of measurement.
Data Visualization
This module will focus on different types of visualization depending on the type of data and information we are trying to communicate. You will learn to calculate and interpret these measures and graphs.
Introduction to Probability Distributions
This module will introduce the basic concepts and application of probability and probability distributions.
Hypothesis testing
This module will focus on teaching the appropriate test to use when dealing with data and relationships between them. It will explain the assumptions of each test and the appropriate language when interpreting the results of a hypothesis test.
审阅
- 5 stars71.62%
- 4 stars20.27%
- 3 stars4.50%
- 2 stars0.90%
- 1 star2.70%
来自STATISTICS FOR DATA SCIENCE WITH PYTHON的热门评论
A very good course to clear the basics pf stat of statistics for data science
Excellent course to help clear doubts for the level of statistics needed for data science. It a great experience. well done IBM!
Great introduction to basic statistics for data science. Python specialization suits those with no experience in the language.
Excellent course with a step by step explanation and complete final assignment.
关于 Data Science Fundamentals with Python and SQL 专项课程
Data Science is one of the hottest professions of the decade, and the demand for data scientists who can analyze data and communicate results to inform data driven decisions has never been greater. This Specialization from IBM will help anyone interested in pursuing a career in data science by teaching them fundamental skills to get started in this in-demand field.

常见问题
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
有助学金吗?
还有其他问题吗?请访问 学生帮助中心。