Chevron Left
返回到 Обучение на размеченных данных

学生对 莫斯科物理科学与技术学院 提供的 Обучение на размеченных данных 的评价和反馈

4.8
2,291 个评分
301 条评论

课程概述

Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинга. Построение предсказывающих алгоритмов — это лишь часть работы при решении задачи анализа данных. Мы разберемся и с другими этапами: оценивание обобщающей способности алгоритмов, подбор параметров модели, выбор и подсчет метрик качества. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

热门审阅

AG

Nov 15, 2019

Очень интересный и более сложный курс по сравнению с предыдущим! Но!! Хотелось бы обновлений и дополнений по нейросетям (мало информации), а также не затронут TensorFlow, что не очень хорошо!

MM

Dec 30, 2016

Спасибо большое за курс!\n\nСистематизировал и вспомнил свои знания по линейным моделям, узнал много нового и полезного про остальные модели, поработал наконец с нейронными сетями!

筛选依据:

251 - Обучение на размеченных данных 的 275 个评论(共 283 个)

创建者 Vadim T

Mar 25, 2017

Велика разница между преподавателями. Особенно неудачно, на мой взгляд, освещались темы Байесовской классификации и регресии и метрические алгоритмы

创建者 Alibek U

May 05, 2020

Все хорошо в целом - из минусов только то, что было задание не адаптированное для Python 3 (5-я неделя, 1-е задание )

创建者 Максим Ф

Aug 25, 2019

Не все вопросы были достаточно понятными, хотелось бы более нормальных вопросов. В остальном всё очень круто. Спасибо

创建者 Nikolay S

Mar 24, 2018

Некоторые задания были плохо составлены. Было слишком много ошибок/багов/опечаток. В остальном было полезно.

创建者 Arsenii M

Jul 22, 2017

В конеце курса немного скомканно подаётся материал, особенно на пятой неделе. В остальном всё отлично!

创建者 Polovinkin A

Oct 08, 2017

- балл за наличие ошибок и недосказанностей в заданиях спустя огромное время с момента старта курса

创建者 Valerii B

Mar 25, 2020

Хороший познавательный курс, но некоторые практические задания плохо поддерживаются и устарели.

创建者 Maksim S

Nov 25, 2019

Коллеги, данный курс можно было бы сделать и подлиннее) Особенно 5ю неделю) А так все ок! )

创建者 Alexey S

May 23, 2016

Не смотря на то, что курс "сыроват" я почерпнул много полезного для работы и лично для себя

创建者 Dmitry D

Nov 09, 2018

Курс отличный! В меру теории и практики. Только 5я неделя подкачала - очень скомканно.

创建者 Студенников В Ю

Oct 25, 2016

Не все используемые понятия объясняются. Очень мало внимания уделено нейронным сетям.

创建者 Gyrdymov I

Nov 30, 2016

Слишком сумборно был подан материал по нейронным сетям, много непонятного осталось

创建者 Аникин Г К

May 17, 2020

Задания могли бы быть и более подготовленными, но, в целом, курс понравился.

创建者 Рыжов В П

Nov 11, 2019

В целом хорошо, но по нейронным сетям слишком мало было рассказано.

创建者 Maria N

Oct 01, 2019

Очень понятно все и интересно. Но по нейронным сетям большой минус.

创建者 Чернышев А О

Sep 18, 2017

Про нейронные сети мало рассказывается, "галопом по Европе"

创建者 Павлов Е В

Jul 09, 2017

Не очень понятно изложено про XGBoost и нейронную сеть.

创建者 Амиров Р М

Apr 24, 2017

Отличный курс! Жаль, что мало практики по нейронкам.

创建者 Антон Г

Oct 24, 2018

Отличный курс, но хотелось бы больше про нейросети

创建者 Захаркин Г Ф

Nov 03, 2019

5 неделя разочаровала

创建者 Ульянов Р

Jul 09, 2017

Лучше первого

创建者 Basil S

Oct 15, 2017

not bad

创建者 Демидова Е А

Jun 17, 2018

Спасибо Виктору Кантор и Дмитрию Ветрову за замечательные и живые лекции. Ваши лекции пробуждают интерес к темам, которые вы затрагиваете. Видно, что вы отлично понимаете то, о чем рассказываете, а главное, можете донести эту информацию до других.Три звезды за то, что некоторые лекции были откровенно некачественными, было похоже, что студента-прогульщика заставили делать доклад по теме, которую он не понимает (конечно, это не касается выше указанных преподавателей).

创建者 Anastasiia B

Feb 21, 2020

Лекции очень сжатые, но понятно куда копать. Другое дело, что копать и сроки сдачи курса не соотносятся от слова "совсем". Частично не адаптированные к питону 3.+ и новым параметрам в библиотеках задания, вместо даже минимального обзора TensorFlow мертвый pybrain. Недостаточно практики. Но при этом очень хороший обзор в целом, чтобы понимать что нужно для специализации.

创建者 Zamoshin P

Oct 04, 2019

Из-за вечного разгадывания ребусов в заданиях (а какие параметры они не указали на этот раз) пропадает всякое желание заниматься курсом. Боюсь, продлять еще раз его уже не буду. Тем не менее, спасибо.