Definition and state-space representation

video-placeholder
Loading...
查看授课大纲

您将学习的技能

Bayesian Statistics, Forecasting, Dynamic Linear Modeling, Time Series, R Programming

从本节课中

Week 2: The AR(p) process

This module extends the concepts learned in Week 1 about the AR(1) process to the general case of the AR(p). Maximum likelihood estimation and Bayesian posterior inference in the AR(p) are discussed.

教学方

  • Placeholder

    Raquel Prado

    Professor

探索我们的目录

免费加入并获得个性化推荐、更新和优惠。