Welcome to Data Analytics Foundations for Accountancy II! I'm excited to have you in the class and look forward to your contributions to the learning community.
To begin, I recommend taking a few minutes to explore the course site. Review the material we’ll cover each week, and preview the assignments you’ll need to complete to pass the course. Click Discussions to see forums where you can discuss the course material with fellow students taking the class.
If you have questions about course content, please post them in the forums to get help from others in the course community. For technical problems with the Coursera platform, visit the Learner Help Center.
Good luck as you get started, and I hope you enjoy the course!

从本节课中

Module 8: Introduction to Anomaly Detection

This module introduces the concept of an anomaly, or outlier, and different techniques for identifying these unusual data points. First, the general concept of an anomaly is discussed and demonstrated in the business community via the detection of fraud, which in general should be an anomaly when compared to normal customers or operations. Next, statistical techniques for identifying outliers are introduced, which often involve simple descriptive statistics that can highlight data that are sufficiently far from the norm for a given data set. Finally, machine learning techniques are reviewed that can either classify outliers or identify points in low density (or outside normal clusters) areas as potential outliers.