The Problem of Overfitting

Loading...
斯坦福大学
4.9(114,547 个评分) | 2.5M 名学生已注册
查看授课大纲

您将学习的技能

Logistic Regression, Artificial Neural Network, Machine Learning (ML) Algorithms, Machine Learning

审阅

4.9(114,547 个评分)
  • 5 stars
    106,088 ratings
  • 4 stars
    7,797 ratings
  • 3 stars
    491 ratings
  • 2 stars
    83 ratings
  • 1 star
    88 ratings
ML

Aug 19, 2017

Very helpful and easy to learn. The quiz and programming assignments are well designed and very useful. Thank Prof. Andrew Ng and coursera and the ones who share their problems and ideas in the forum.

OK

Apr 18, 2018

You need to know, what do you want to get out of this course. It gives you a lot of information, but be prepared to work hard with linear algeabra and make efforts to compute things in Mathlab/Octave.

从本节课中
Regularization
Machine learning models need to generalize well to new examples that the model has not seen in practice. In this module, we introduce regularization, which helps prevent models from overfitting the training data.

教学方

  • Andrew Ng

    Andrew Ng

    CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain

探索我们的目录

免费加入并获得个性化推荐、更新和优惠。