Loading...

Метод максимального правдоподобия

Добро пожаловать на третью неделю курса! Вы уже поработали с линейными моделями, научились измерять их качество и устранять переобучение с помощью регуляризации. Пришло время разобраться, почему регуляризация действительно помогает уменьшить сложность модели или произвести отбор признаков — об этом пойдёт речь в первом уроке. Там же вы познакомитесь с логистической регрессией, которая является одним из наиболее популярных методов для решения задач классификации. Далее вы узнаете о некоторых важных нюансах работы с линейными моделями: масштабировании признаков, переходе в новые признаковые пространства и т.д. Мы не только расскажем обо всём этом, но и покажем, как оно работает в Python и библиотеке scikit-learn.

关于 Coursera

课程、专项课程和在线学位均由全世界一流大学和教育机构的顶尖授课教师教授。

Community
Join a community of 40 million learners from around the world
Certificate
Earn a skill-based course certificate to apply your knowledge
Career
Gain confidence in your skills and further your career