Basic Artificial Neural Networks in Python

4.2
42 个评分
提供方
Coursera Project Network
2,195 人已注册
在此指导项目中,您将:

Generate a sample dataset using Scikit-Learn.

Implement an activation function and feed-forward propagation in a multi-layer ANN in Python code

Utilize gradient descent to adjust the weights of each layer of our ANN through back-propagation implementation in Python code

Clock2 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 1-hour long project-based course, you will learn basic principles of how Artificial Neural Networks (ANNs) work, and how this can be implemented in Python. Together, we will explore basic Python implementations of feed-forward propagation, back propagation using gradient descent, sigmoidal activation functions, and epoch training, all in the context of building a basic ANN from scratch. All of this will be done on Ubuntu Linux, but can be accomplished using any Python I.D.E. on any operating system. We will be using the IDLE development environment to write a single script to code our simple ANN. We will avoid using advanced frameworks such as Tensorflow or Pytorch, for educational purposes. Note that the resulting ANN we build will be use-case agnostic and be provided with dummy inputs. Hence, while the ANN we build and train today may appear to be a useless demonstration, it can easily be adapted to any type of use case if given proper, meaningful inputs. I would encourage learners to experiment- How easy is it to add more layers without using frameworks like Tensorflow? What if we add more nodes? What limitations do we come across? The learner is highly encouraged to experiment beyond the scope of the course. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

Deep LearningArtificial Neural NetworkPython ProgrammingPropagationTensorflow

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Generate a dataset using Scikit-Learn

  2. Plot generated sample dataset to a graph using pyplot

  3. For each layer, multiply inputs by randomly generated weights

  4. For each layer, calculate the dot products of our two-dimensional sample features

  5. Write a sigmoidal activation function in Python and pass the dot product of our features through it before passing as input to the next layer to accomplish feed-forward propagation

  6. Write a cost function in Python based on the Mean Squared Error method

  7. Utilize gradient descent to adjust the weights of each layer of our ANN through back-propagation implementation in Python code

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自BASIC ARTIFICIAL NEURAL NETWORKS IN PYTHON的热门评论

查看所有评论

常见问题

常见问题

  • 购买指导项目后,您将获得完成指导项目所需的一切,包括通过 Web 浏览器访问云桌面工作空间,工作空间中包含您需要了解的文件和软件,以及特定领域的专家提供的分步视频说明。

  • 由于您的工作空间包含适合笔记本电脑或台式计算机使用的云桌面,因此指导项目不在移动设备上提供。

  • 指导项目讲师是特定领域的专家,他们在项目的技能、工具或领域方面经验丰富,并且热衷于分享自己的知识以影响全球数百万的学生。

  • 您可以从指导项目中下载并保留您创建的任何文件。为此,您可以在访问云桌面时使用‘文件浏览器’功能。

  • 指导项目不符合退款条件。请查看我们完整的退款政策

  • 指导项目不提供助学金。

  • 指导项目不支持旁听。

  • 您可在页面顶部点按此指导项目的经验级别,查看任何知识先决条件。对于指导项目的每个级别,您的讲师会逐步为您提供指导。

  • 是,您可以在浏览器的云桌面中获得完成指导项目所需的一切。

  • 您可以直接在浏览器中于分屏环境下完成任务,以此从做中学。在屏幕的左侧,您将在工作空间中完成任务。在屏幕的右侧,您将看到有讲师逐步指导您完成项目。

还有其他问题吗?请访问 学生帮助中心