Classification of COVID19 using Chest X-ray Images in Keras

4.6
25 个评分
提供方
在此指导项目中,您将:

Learn to Build and Train the Convolutional Neural Network using Keras with Tensorflow as Backend

Learn to Visualize Data in Matplotlib

Learn to make use of the Trained Model to Predict on a New Set of Data

2 hours
中级
无需下载
分屏视频
英语(English)
仅限桌面

In this 1 hour long project-based course, you will learn to build and train a convolutional neural network in Keras with TensorFlow as backend from scratch to classify patients as infected with COVID or not using their chest x-ray images. Our goal is to create an image classifier with Tensorflow by implementing a CNN to differentiate between chest x rays images with a COVID 19 infections versus without. The dataset contains the lungs X-ray images of both groups.We will be carrying out the entire project on the Google Colab environment. Please be aware of the fact that the dataset and the model in this project, can not be used in the real-life. We are only using this data for educational purposes. By the end of this project, you will be able to build and train the convolutional neural network using Keras with TensorFlow as a backend. You will also be able to perform data visualization. Additionally, you will also be able to use the model to make predictions on new data. You should be familiar with the Python Programming language and you should have a theoretical understanding of Convolutional Neural Networks. You will need a free Gmail account to complete this project. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Data Science

  • Deep Learning

  • Convolutional Neural Network

  • Python Programming

  • Keras/ Tensorflow

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introduction & Import Libraries

  2. Clone and Explore Dataset

  3. Data Visualization

  4. Data preprocessing and Augmentation

  5. Build a Convolutional Neural Network (CNN)

  6. Compile and Train the Model

  7. Performance Evaluation

  8. Prediction on New Data

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自CLASSIFICATION OF COVID19 USING CHEST X-RAY IMAGES IN KERAS的热门评论

查看所有评论

常见问题

购买指导项目后,您将获得完成指导项目所需的一切,包括通过 Web 浏览器访问云桌面工作空间,工作空间中包含您需要了解的文件和软件,以及特定领域的专家提供的分步视频说明。

由于您的工作空间包含适合笔记本电脑或台式计算机使用的云桌面,因此指导项目不在移动设备上提供。

指导项目授课教师是特定领域的专家,他们在项目的技能、工具或领域方面经验丰富,并且热衷于分享自己的知识以影响全球数百万的学生。

您可以从指导项目中下载并保留您创建的任何文件。为此,您可以在访问云桌面时使用‘文件浏览器’功能。

指导项目不符合退款条件。请查看我们完整的退款政策

指导项目不提供助学金。

指导项目不支持旁听。

您可在页面顶部点按此指导项目的经验级别,查看任何知识先决条件。对于指导项目的每个级别,您的授课教师会逐步为您提供指导。

是,您可以在浏览器的云桌面中获得完成指导项目所需的一切。

您可以直接在浏览器中于分屏环境下完成任务,以此从做中学。在屏幕的左侧,您将在工作空间中完成任务。在屏幕的右侧,您将看到有授课教师逐步指导您完成项目。

还有其他问题吗?请访问 学生帮助中心