Customer Segmentation using K-Means Clustering in R

提供方
Coursera Project Network
在此指导项目中,您将:

Understand the intuition behind the K-Means Clustering algorithm

Create plots of the customer features

Create plots of the distinct customer segments based on features

Clock2.5 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

Welcome to this project-based course, Customer Segmentation using K-Means Clustering in R. In this project, you will learn how to perform customer market segmentation on mall customers data using different R packages. By the end of this 2-and-a-half-hour long project, you will understand how to get the mall customers data into your RStudio workspace and explore the data. By extension, you will learn how to use the ggplot2 package to render beautiful plots of the data. Also, you will learn how to get the optimal number of clusters for the customers' segments and use K-Means to create distinct groups of customers based on their characteristics. Finally, you will learn how to use the R markdown file to organise your work and how to knit your code into an HTML document for publishing. Although you do not need to be a data analyst expert or data scientist to succeed in this guided project, it requires a basic knowledge of using R, especially writing R syntaxes. Therefore, to complete this project, you must have prior experience with using R. If you are not familiar with working with using R, please go ahead to complete my previous project titled: “Getting Started with R”. It will hand you the needed knowledge to go ahead with this project on Customer Segmentation. However, if you are comfortable with working with R, please join me on this beautiful ride! Let’s get our hands dirty!

您要培养的技能

  • clustering
  • Ggplot2
  • K-Means Clustering
  • PCA
  • unsupervised machine learning

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Getting Started

  2. Import and Explore the Data

  3. Data Visualization - Part One

  4. Data Visualization - Part Two

  5. Understand the concept of K-Means

  6. Determine the number of Clusters

  7. K-Means Clustering

  8. Principal Component Analysis

  9. Plot the K-Means Segments

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心