Image Data Augmentation with Keras

4.6
422 个评分
提供方
Coursera Project Network
8,682 人已注册
在此指导项目中,您将:

Image Data Augmentation with Keras

Using Image Data Generator with a Keras Model

Clock1.5 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 1.5-hour long project-based course, you will learn how to apply image data augmentation in Keras. We are going to focus on using the ImageDataGenerator class from Keras’ image preprocessing package, and will take a look at a variety of options available in this class for data augmentation and data normalization. Since this is a practical, project-based course, you will need to prior experience with Python programming, convolutional neural networks, and Keras with a TensorFlow backend. Data augmentation is a technique used to create more examples, artificially, from an existing dataset. This is useful if your dataset is small and you want to increase the number of examples. Data augmentation can often solve over-fitting so that your model generalizes well after training. For images, a variety of augmentation can be applied to increase the number of examples. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

Deep LearningConvolutional Neural NetworkMachine Learningimage augmentationkeras

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introduction and Importing Libraries

  2. Rotation

  3. Width and Height Shifts

  4. Brightness

  5. Shear Transformation

  6. Zoom

  7. Channel Shift

  8. Horizontal and Vertical Flips

  9. Data Normalization

  10. Rescale and Preprocessing Function

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自IMAGE DATA AUGMENTATION WITH KERAS的热门评论

查看所有评论

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心