Deploy Machine Learning Model into AWS Cloud Servers

4.3
29 个评分
提供方
Coursera Project Network
在此指导项目中,您将:

Build a machine learning-based spam detector API

Deploy the machine learning application into AWS virtual servers.

Clock2 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

By the end of this project, you will learn how to build a spam detector using machine learning & launch it as a serverless API using AWS Elastic Beanstalk technology. You will be using the Flask python framework to create the API, basic machine learning methods to build the spam detector & AWS desktop management console to deploy the spam detector into the AWS cloud servers. Additionally, you will learn more about how to switch between different versions of your web application & also, monitoring your AWS servers using Elastic Beanstalk Desktop Management Console. Note: To avoid distraction for set up during the course, we would recommend that you create an Amazon AWS account beforehand. Amazon AWS provides a free tier option for 1 year & the course materials will utilize services that fall under the free tier option.

您要培养的技能

  • aws
  • EC2
  • Aws Elastic Beanstalk
  • Machine Learning
  • Python Programming

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Create a Flask application

  2. Create a RESTful API - GET/POST Method

  3. Build a spam detector ML model

  4. Build a spam detector API

  5. Launch an AWS EC2 instance(Virtual Server) using AWS Elastic Beanstalk.

  6. Deploy your ML model(API) into AWS virtual servers.

  7. Perform additional AWS Elastic Beanstalk actions: Application versioning, Server logs, Server performance monitoring & Terminate the server.

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心