Dimensionality Reduction using an Autoencoder in Python

4.6

93 个评分

提供方

3,423 人已注册

在此指导项目中,您将:
60 minutes
中级
无需下载
分屏视频
英语(English)
仅限桌面

In this 1-hour long project, you will learn how to generate your own high-dimensional dummy dataset. You will then learn how to preprocess it effectively before training a baseline PCA model. You will learn the theory behind the autoencoder, and how to train one in scikit-learn. You will also learn how to extract the encoder portion of it to reduce dimensionality of your input data. In the course of this project, you will also be exposed to some basic clustering strength metrics. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Dimensionality Reduction

  • Artificial Neural Network

  • Machine Learning

  • clustering

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

授课教师

审阅

来自DIMENSIONALITY REDUCTION USING AN AUTOENCODER IN PYTHON 的热门评论

查看所有评论

常见问题