Understand the theory and intuition behind Deep Neural Networks, and Residual Neural Networks, and Convolutional Neural Networks (CNNs).
Build and train a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend.
Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.
In this hands-on project, we will train a deep learning model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect facial expressions. This project could be practically used for detecting customer emotions and facial expressions. By the end of this project, you will be able to: - Understand the theory and intuition behind Deep Learning, Convolutional Neural Networks (CNNs) and Residual Neural Networks. - Import Key libraries, dataset and visualize images. - Perform data augmentation to increase the size of the dataset and improve model generalization capability. - Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.
在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:
Project Overview/Understand the problem statement and business case
Import Libraries/datasets and perform preliminary data processing
Perform Image Visualization
Perform Image Augmentation, normalization and splitting
Understand the theory and intuition behind Deep Neural Networks and CNNs
Build and Train Residual Neural Network Model
Assess the Performance of the Trained Model
您的工作空间就是浏览器中的云桌面,无需下载
在分屏视频中,您的授课教师会为您提供分步指导
Wonderful course! I got a lot of new knowledge, particularly about how CNN really works and how to apply it using existing libraries in python! 6/5
Easy Quiz thanks for this course it helped me to understand concept clearly without wasting much of my time.
Good course , for a short and introductory portion for a bigger work.
the lecturer is so geniuuuuuuussss, thank you so much
如果我购买指导 项目,会得到什么?
购买指导 项目 后,您将获得完成指导 项目 所需的一切,包括通过 Web 浏览器访问云桌面工作空间,工作空间中包含您需要了解的文件和软件,以及特定领域的专家提供的分步视频说明。
指导 项目 可在台式设备和移动设备上学习吗?
由于您的工作空间包含适合笔记本电脑或台式计算机使用的云桌面,因此无法在移动设备上学习指导 项目。
指导 项目 的讲师是谁?
指导 项目 讲师是特定领域的专家,他们在项目的技能、工具或领域方面经验丰富,并且热衷于分享自己的知识以影响全球数百万的学生。
我能在完成指导 项目 后从中下载作品吗?
您可以从指导 项目 中下载并保留您创建的任何文件。为此,您可以在访问云桌面时使用'文件浏览器'功能。
我能够退款吗?退款政策是如何规定的?
指导 项目 不符合退款条件。请查看我们完整的退款政策。
有助学金吗?
指导 项目 不提供助学金。
我能旁听指导 项目 并免费观看视频部分吗?
指导 项目 不支持旁听。
我需要具备多少经验才能做这个指导 项目?
您可在页面顶部点按此指导 项目 的经验级别,查看任何知识先决条件。对于指导 项目 的每个级别,您的讲师会逐步为您提供指导。
我能直接通过 Web 浏览器来完成此指导 项目,而不必安装特殊软件吗?
是,您可以在浏览器的云桌面中获得完成指导 项目 所需的一切。
指导 项目 的学习体验如何?
您可以直接在浏览器中于分屏环境下完成任务,以此从做中学。在屏幕的左侧,您将在工作空间中完成任务。在屏幕的右侧,您将看到有讲师逐步指导您完成项目。
还有其他问题吗?请访问 学生帮助中心。