Interpretable Machine Learning Applications: Part 4

提供方
Coursera Project Network
在此指导项目中,您将:

Set up a machine learning application in a "zero configuration" environment such as Google's Colab(oratory) Research platform.

Set up and configure the What-If Tool to analyze the behavior of exemplary machine learning prediction models.

Clock1.5 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 1-hour long guided project, you will learn how to use the "What-If" Tool (WIT) in the context of training and testing machine learning prediction models. In particular, you will learn a) how to set up a machine learning application in Python by using interactive Python notebook(s) on Google's Colab(oratory) environment, a.k.a. "zero configuration" environment, b) import and prepare the data, c) train and test classifiers as prediction models, d) analyze the behavior of the trained prediction models by using WIT for specific data points (individual basis), e) moving on to the analysis of the behavior of the trained prediction models by using WIT global basis, i.e., all test data considered. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Data Analysis
  • Data scientist
  • Machine learning project management

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Set up the environment for the "What-If" tool (WIT) as an extension in Jupyter and as a Google's Colaboratory notebook, including importing of the dataset (e.g., white wine quality data)

  2. Train classifiers, e.g., Decision Tree and Random Forest, as exemplary machine learning  prediction models to make predictions about the quality of white wines.

  3. Launch the What-If Tool (WIT) widget. This task will allow us to get a first understanding on how our prediction model(s) behave at both individual and global levels.

  4. Use the What-If Tool (WIT) features to explain the behavior of a prediction model on an individual basis.

  5. Use the What-If Tool (WIT) advanced features to explain the behavior of a prediction model on an individual basis.

  6. Use the What-If Tool (WIT) features to explain the behavior of a prediction model on a global basis.

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心