Linear Regression with Python

4.6
384 个评分
提供方
Coursera Project Network
9,008 人已注册
在此指导项目中,您将:

Create a linear model, and implement gradient descent.

Train the linear model to fit given data using gradient descent.

Clock2 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 2-hour long project-based course, you will learn how to implement Linear Regression using Python and Numpy. Linear Regression is an important, fundamental concept if you want break into Machine Learning and Deep Learning. Even though popular machine learning frameworks have implementations of linear regression available, it's still a great idea to learn to implement it on your own to understand the mechanics of optimization algorithm, and the training process. Since this is a practical, project-based course, you will need to have a theoretical understanding of linear regression, and gradient descent. We will focus on the practical aspect of implementing linear regression with gradient descent, but not on the theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

Data ScienceDeep LearningMachine LearningPython ProgrammingLinear Regression

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introduction

  2. Dataset

  3. Initialize Parameters

  4. Forward Pass

  5. Compute Loss

  6. Backward Pass

  7. Update Parameters

  8. Training Loop

  9. Predictions

  10. Additional Example

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自LINEAR REGRESSION WITH PYTHON的热门评论

查看所有评论

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心