Linear Regression with NumPy and Python

4.4
817 个评分
提供方
Coursera Project Network
15,409 人已注册
在此指导项目中,您将:

Implement the gradient descent algorithm from scratch

Perform univariate linear regression with Numpy and Python

Create data visualizations and plots using matplotlib

Clock1.5 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

Welcome to this project-based course on Linear Regression with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent and linear regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed.

您要培养的技能

Data ScienceMachine LearningPython ProgrammingregressionNumpy

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introduction and Overview

  2. Load the Data and Libraries

  3. Visualize the Data

  4. Compute the Cost Function 𝐽(𝜃)

  5. Gradient Descent

  6. Visualize the Cost Function 𝐽(𝜃)

  7. Plot the Convergence

  8. Training Data with Univariate Linear Regression Fit

  9. Inference using the optimized 𝜃 values

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自LINEAR REGRESSION WITH NUMPY AND PYTHON的热门评论

查看所有评论

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心