Bank Loan Approval Prediction With Artificial Neural Nets

提供方
Coursera Project Network
在此指导项目中,您将:

Understand the theory and intuition behind Deep Neural Networks

Build and train a deep learning model using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained model and ensure its generalization using various Key performance indicators.

Clock2 hours
Beginner初级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this hands-on project, we will build and train a simple deep neural network model to predict the approval of personal loan for a person based on features like age, experience, income, locations, family, education, exiting mortgage, credit card etc. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind Deep Neural Networks - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn. - Standardize the data and split them into train and test datasets.   - Build a deep learning model using Keras with Tensorflow 2.0 as a back-end. - Assess the performance of the model and ensure its generalization using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

Deep LearningArtificial Intelligence (AI)Machine LearningPython Programmingclassification

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Task 1: Understand the problem statement and business case

  2. Task 2: Import Datasets and Libraries

  3. Task 3: Exploratory Data Analysis

  4. Task 4: Perform Data Visualization

  5. Task 5: Prepare the data to feed the model

  6. Task 6: Understand the theory and intuition behind Artificial Neural Networks

  7. Task 7: Build a simple Multi Layer Neural Network

  8. Task 8: Compile and train a Deep Learning Model

  9. Task 9: Assess the performance of the trained model

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心