Mining Quality Prediction Using Machine & Deep Learning

4.8
27 个评分
提供方
Coursera Project Network
2,972 人已注册
在此指导项目中,您将:

Train Artificial Neural Network models to perform regression tasks

Understand the theory and intuition behind regression models and train them in Scikit Learn

Understand the difference between various regression models KPIs such as MSE, RMSE, MAE, R2, adjusted R2

Clock1.5 hours
Beginner初级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 1.5-hour long project-based course, you will be able to: - Understand the theory and intuition behind Simple and Multiple Linear Regression. - Import Key python libraries, datasets and perform data visualization - Perform exploratory data analysis and standardize the training and testing data. - Train and Evaluate different regression models using Sci-kit Learn library. - Build and train an Artificial Neural Network to perform regression. - Understand the difference between various regression models KPIs such as MSE, RMSE, MAE, R2, and adjusted R2. - Assess the performance of regression models and visualize the performance of the best model using various KPIs.

您要培养的技能

regression modelsDeep LearningArtificial Intelligence (AI)Machine LearningPython Programming

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Understand the problem statement and business case

  2. Import libraries/datasets and perform data exploration

  3. Perform data visualization

  4. Prepare the data before model training

  5. Train and evaluate a linear regression model

  6. Train and evaluate a decision tree and random forest models

  7. Understand the theory and intuition behind artificial neural networks

  8. Train an artificial neural network to perform regression task

  9. Compare models and calculate regression KPIs

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自MINING QUALITY PREDICTION USING MACHINE & DEEP LEARNING的热门评论

查看所有评论

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心