Python for Finance: Portfolio Statistical Data Analysis

提供方
Coursera Project Network
在此指导项目中,您将:

Perform exploratory data analysis and visualization of financial data

Portfolio allocation and calculate portfolio statistical metrics

Perform interactive data visualization using Plotly Express

Clock2 hours
Beginner初级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this project, we will use the power of python to perform portfolio allocation and statistically analyze the performance of portfolio using metrics such as cumulative return, average daily returns and Sharpe ratio. We will analyze the performance of following companies: Facebook, Netflix and Twitter over the past 7 years. This project is crucial for investors who want to properly manage their portfolios, visualize datasets, find useful patterns, and gain valuable insights such as stock daily returns and risks. This project could be practically used for analyzing company stocks, indices or currencies and performance of portfolio. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

Data ManipulationFinancial AnalysisPython ProgrammingData Visualization (DataViz)Finance

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Understand the problem statement and business case

  2. Import datasets and libraries

  3. Perform random asset allocation and calculate portfolio daily return

  4. Perform random asset allocation and calculate portfolio daily return

  5. Perform portfolio data visulaization

  6. U​nderstand and calculate portfolio statistical metrics

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心