Regresión logística con NumPy y Python

提供方
Coursera Project Network
在此指导项目中,您将:

Implementarás el algoritmo de descenso de gradientes desde cero

Realizarás una regresión logística con Numpy y Python

Crearás visualizaciones de datos con Matplotlib y Seaborn

Clock2 horas
Beginner初级
Cloud无需下载
Video分屏视频
Comment Dots西班牙语(Spanish)
Laptop仅限桌面

Bienvenidos a este curso basado en un proyecto de regresión logística con Numpy y Python. En este proyecto, aprenderás uno de los conceptos bases del machine learning sin usar ninguna de las bibliotecas o librerías populares de machine learning como scikit-learn y statsmodels. El objetivo de este proyecto es que implementes por ti mismo toda la carpintería, incluyendo descenso de gradiente, función de costo, y regresión logística, que se utilizan en diversos algoritmos de aprendizaje, para que tengas una comprensión más profunda de los fundamentos. Para cuando complete este proyecto, podrá construir un modelo de regresión logística utilizando Python y Numpy, realizar análisis de datos exploratorios básicos, e implementar el descenso de gradientes desde cero. Este curso se ejecuta en la plataforma de proyectos prácticos de Coursera llamada Rhyme. En Rhyme, se realizan proyectos de forma práctica en el navegador. Tendrás acceso instantáneo a escritorios en la nube pre-configurados que contienen todo el software y los datos que necesitas para el proyecto. Todo ya está configurado directamente en tu navegador de Internet para que puedas concentrarte en el aprendizaje. Para este proyecto, obtendrás acceso instantáneo a un escritorio en la nube con Python, Jupyter, Numpy y Seaborn preinstalados.

您要培养的技能

  • Data Science
  • Machine Learning
  • Python Programming
  • classification
  • Numpy

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introducción a Rhyme y al proyecto

  2. Importar el dataset y las librerías

  3. Visualización de los datos

  4. Definir la función logística de Sigmoid

  5. Calcular la función del costo y el gradiente

  6. Inicializar el costo y el gradiente

  7. Calcular el descenso del gradiente

  8. Trazar la convergencia de la función del costo

  9. Trazar el límite de decisión

  10. Realizar predicciones usando los valores optimizados

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心