Regression with Automatic Differentiation in TensorFlow

4.7
60 个评分
提供方
Coursera Project Network
4,319 人已注册
在此指导项目中,您将:

Understanding tensor constants, and tensor variables in TensorFlow.

Understanding automatic differentiation in TensorFlow.

Using automatic differentiation to solve a linear regression problem in TensorFlow.

Clock1.5 hours
Beginner初级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 1.5 hour long project-based course, you will learn about constants and variables in TensorFlow, you will learn how to use automatic differentiation, and you will apply automatic differentiation to solve a linear regression problem. By the end of this project, you will have a good understanding of how machine learning algorithms can be implemented in TensorFlow. In order to be successful in this project, you should be familiar with Python, Gradient Descent, Linear Regression. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Mathematical Optimization
  • Machine Learning
  • Tensorflow
  • Linear Regression
  • Automatic Differentiation

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Tensor Constants

  2. Tensor Variables

  3. Automatic Differentiation

  4. Watching Tensors

  5. Persistent Tape

  6. Generating Data for Linear Regression

  7. Linear Regression

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自REGRESSION WITH AUTOMATIC DIFFERENTIATION IN TENSORFLOW的热门评论

查看所有评论

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心