Predict Sales Revenue with scikit-learn

4.5
188 个评分
提供方
Coursera Project Network
4,031 人已注册
在此指导项目中,您将:

Build simple linear regression models in Python

Apply scikit-learn and statsmodels to regression problems

Employ explorartory data analysis (EDA) with seaborn and pandas

Explain linear regression to both technical and non-technical audiences

Clock2 hours
Beginner初级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 2-hour long project-based course, you will build and evaluate a simple linear regression model using Python. You will employ the scikit-learn module for calculating the linear regression, while using pandas for data management, and seaborn for plotting. You will be working with the very popular Advertising data set to predict sales revenue based on advertising spending through mediums such as TV, radio, and newspaper. By the end of this course, you will be able to: - Explain the core ideas of linear regression to technical and non-technical audiences - Build a simple linear regression model in Python with scikit-learn - Employ Exploratory Data Analysis (EDA) to small data sets with seaborn and pandas - Evaluate a simple linear regression model using appropriate metrics This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Jupyter and Python 3.7 with all the necessary libraries pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

Machine LearningData Visualization (DataViz)Linear RegressionExploratory Data AnalysisScikit-Learn

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introduction and Overview

  2. Loading the Data and Importing Libraries

  3. Removing the Index Column

  4. Exploratory Data Analysis (EDA)

  5. Relationship between Predictors and Response

  6. Creating the Simple Linear Regression Model

  7. Evaluation and Model Parameters

  8. Making Predictions with the Model

  9. Model Evaluation Metrics

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自PREDICT SALES REVENUE WITH SCIKIT-LEARN的热门评论

查看所有评论

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心