Simple Nearest Neighbors Regression and Classification

提供方
在此指导项目中,您将:

Formulate small examples of KNN classification by hand

Implement a KNN Classification algorithm in Python

Implement a KNN Regression algorithm in Python

2 hours
中级
无需下载
分屏视频
英语(English)
仅限桌面

In this 2-hour long project-based course, we will explore the basic principles behind the K-Nearest Neighbors algorithm, as well as learn how to implement KNN for decision making in Python. A simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems is the k-nearest neighbors (KNN) algorithm. The fundamental principle is that you enter a known data set, add an unknown data point, and the algorithm will tell you which class corresponds to that unknown data point. The unknown is characterized by a straightforward neighborly vote, where the "winner" class is the class of near neighbors. It is most commonly used for predictive decision-making. For instance,: Is a consumer going to default on a loan or not? Will the company make a profit? Should we extend into a certain sector of the market? Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Statistical Analysis

  • Machine Learning

  • Python Programming

  • K-Nearest Neighbors Algorithm (K-NN)

  • Classification Algorithms

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Understanding the Basic Structure of a KNN model

  2. Computing a simple KNN by hand

  3. Looking at an example of a KNN in action in Python

  4. Implementing an example KNN Regression in Python

  5. Implementing an example KNN Classification in Python

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

购买指导项目后,您将获得完成指导项目所需的一切,包括通过 Web 浏览器访问云桌面工作空间,工作空间中包含您需要了解的文件和软件,以及特定领域的专家提供的分步视频说明。

由于您的工作空间包含适合笔记本电脑或台式计算机使用的云桌面,因此指导项目不在移动设备上提供。

指导项目授课教师是特定领域的专家,他们在项目的技能、工具或领域方面经验丰富,并且热衷于分享自己的知识以影响全球数百万的学生。

您可以从指导项目中下载并保留您创建的任何文件。为此,您可以在访问云桌面时使用‘文件浏览器’功能。

指导项目不符合退款条件。请查看我们完整的退款政策

指导项目不提供助学金。

指导项目不支持旁听。

您可在页面顶部点按此指导项目的经验级别,查看任何知识先决条件。对于指导项目的每个级别,您的授课教师会逐步为您提供指导。

是,您可以在浏览器的云桌面中获得完成指导项目所需的一切。

您可以直接在浏览器中于分屏环境下完成任务,以此从做中学。在屏幕的左侧,您将在工作空间中完成任务。在屏幕的右侧,您将看到有授课教师逐步指导您完成项目。