NLP: Twitter Sentiment Analysis

4.6
257 个评分
提供方
Coursera Project Network
6,834 人已注册
在此指导项目中,您将:

Create a pipeline to remove stop-words, punctuation, and perform tokenization

Understand the theory and intuition behind Naive Bayes classifiers

Train a Naive Bayes Classifier and assess its performance

Clock2 hours
Beginner初级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this hands-on project, we will train a Naive Bayes classifier to predict sentiment from thousands of Twitter tweets. This project could be practically used by any company with social media presence to automatically predict customer's sentiment (i.e.: whether their customers are happy or not). The process could be done automatically without having humans manually review thousands of tweets and customer reviews. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

Artificial Intelligence (AI)Python ProgrammingMachine LearningNatural Language Processing

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Import libraries and datasets

  2. Perform Exploratory Data Analysis

  3. Plot the word cloud

  4. Perform data cleaning - removing punctuation

  5. Perform data cleaning - remove stop words

  6. Perform Count Vectorization (Tokenization)

  7. Create a pipeline to remove stop-words, punctuation, and perform tokenization

  8. Understand the theory and intuition behind Naive Bayes classifiers

  9. Train a Naive Bayes Classifier

  10. Assess trained model performance

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

讲师

审阅

来自NLP: TWITTER SENTIMENT ANALYSIS的热门评论

查看所有评论

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心