## 关于此 专项课程

2,451 次近期查看
The purpose of this series of courses is to teach the basics of Computational Statistics for the purpose of performing inference to aspiring or new Data Scientists. This is not intended to be a comprehensive course that teaches the basics of statistics and probability nor does it cover Frequentist statistical techniques based on the Null Hypothesis Significance Testing (NHST). What it does cover is: The basics of Bayesian statistics and probability Understanding Bayesian inference and how it works The bare-minimum set of tools and a body of knowledge required to perform Bayesian inference in Python, i.e. the PyData stack of NumPy, Pandas, Scipy, Matplotlib, Seaborn and Plot.ly A scalable Python-based framework for performing Bayesian inference, i.e. PyMC3 With this goal in mind, the content is divided into the following three main sections (courses). Introduction to Bayesian Statistics - The attendees will start off by learning the the basics of probability, Bayesian modeling and inference in Course 1. Introduction to Monte Carlo Methods - This will be followed by a series of lectures on how to perform inference approximately when exact calculations are not viable in Course 2. PyMC3 for Bayesian Modeling and Inference - PyMC3 will be introduced along with its application to some real world scenarios. The lectures will be delivered through Jupyter notebooks and the attendees are expected to interact with the notebooks.

100% 在线课程

100% 在线课程

## 专项课程的运作方式

### 加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习，请直接注册专项课程，或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时，您将自动订阅整个专项课程。您可以只完成一门课程，您可以随时暂停学习或结束订阅。访问您的学生面板，跟踪您的课程注册情况和进度。

### 获得证书 ## 提供方 