- perception
- features and boundaries
- Object Recognition
- Camera and imaging
- 3d reconstruction
- Fourier Transform
- High-Dynamic-Range (HDR) Imaging
- Image Formation
- Convolution and Deconvolution
- Working Principles of a Camera
- Scale Space
- Active Contours
First Principles of Computer Vision 专项课程
Master the First Principles of Computer Vision. Advance the mathematical and physical algorithms empowering computer vision
提供方

您将学到的内容有
Master the working principles of a digital camera and learn the fundamentals of imaging processing
Create a theory of feature detection and develop algorithms for extracting features from images
Explore novel methods for using visual cues (shading, defocus, etc.) to recover the 3D shape of an object from multiple images or viewpoints
Get exposed to fundamental perceptions tasks such as image segmentation, object tracking, and object recognition
您将获得的技能
关于此 专项课程
应用的学习项目
Learners will develop the fundamental knowledge of computer vision by applying the models and tools including: image processing, image features, constructing 3D scene, image segmentation and object recognition. The specialization includes roughly 250 assessment questions. Proficiency in the fundamentals of computer vision is valued by a wide range of technology companies and research organizations.
Learners should know the fundamentals of linear algebra and calculus. Knowing any programming language is beneficial, but not required.
Learners should know the fundamentals of linear algebra and calculus. Knowing any programming language is beneficial, but not required.
专项课程的运作方式
加入课程
Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。
实践项目
每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。
获得证书
在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

此专项课程包含 5 门课程
Camera and Imaging
This course covers the fundamentals of imaging – the creation of an image that is ready for consumption or processing by a human or a machine. Imaging has a long history, spanning several centuries. But the advances made in the last three decades have revolutionized the camera and dramatically improved the robustness and accuracy of computer vision systems. We describe the fundamentals of imaging, as well as recent innovations in imaging that have had a profound impact on computer vision.
Features and Boundaries
This course focuses on the detection of features and boundaries in images. Feature and boundary detection is a critical preprocessing step for a variety of vision tasks including object detection, object recognition and metrology – the measurement of the physical dimensions and other properties of objects. The course presents a variety of methods for detecting features and boundaries and shows how features extracted from an image can be used to solve important vision tasks.
3D Reconstruction - Single Viewpoint
This course focuses on the recovery of the 3D structure of a scene from its 2D images. In particular, we are interested in the 3D reconstruction of a rigid scene from images taken by a stationary camera (same viewpoint). This problem is interesting as we want the multiple images of the scene to capture complementary information despite the fact that the scene is rigid and the camera is fixed. To this end, we explore several ways of capturing images where each image provides additional information about the scene.
3D Reconstruction - Multiple Viewpoints
This course focuses on the recovery of the 3D structure of a scene from images taken from different viewpoints. We start by first building a comprehensive geometric model of a camera and then develop a method for finding (calibrating) the internal and external parameters of the camera model. Then, we show how two such calibrated cameras, whose relative positions and orientations are known, can be used to recover the 3D structure of the scene. This is what we refer to as simple binocular stereo. Next, we tackle the problem of uncalibrated stereo where the relative positions and orientations of the two cameras are unknown. Interestingly, just from the two images taken by the cameras, we can both determine the relative positions and orientations of the cameras and then use this information to estimate the 3D structure of the scene.
提供方

哥伦比亚大学
For more than 250 years, Columbia has been a leader in higher education in the nation and around the world. At the core of our wide range of academic inquiry is the commitment to attract and engage the best minds in pursuit of greater human understanding, pioneering new discoveries and service to society.
常见问题
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程需要多长时间?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
完成专项课程后我会获得大学学分吗?
What will I be able to do upon completing the Specialization?
还有其他问题吗?请访问 学生帮助中心。