- Deep Learning
- Python Programming
- Unsupervised Learning
- Supervised Learning
- hyperparameter tuning
- Hyperparameter
- Decision Tree
- ensembling
- sklearn
- Dimensionality Reduction
- Cluster Analysis
- Recommender Systems
Machine Learning: Theory and Hands-on Practice with Python 专项课程
Develop Foundational Machine Learning Skills. Add Supervised, Unsupervised, and Deep Learning techniques to your Data Science toolkit.
您将学到的内容有
Explore several classic Supervised and Unsupervised Learning algorithms and introductory Deep Learning topics.
Build and evaluate Machine Learning models utilizing popular Python libraries and compare each algorithm’s strengths and weaknesses.
Explain which Machine Learning models would be best to apply to a Machine Learning task based on the data’s properties.
Improve model performance by tuning hyperparameters and applying various techniques such as sampling and regularization.
您将获得的技能
关于此 专项课程
应用的学习项目
In this specialization, you will build a movie recommendation system, identify cancer types based on RNA sequences, utilize CNNs for digital pathology, practice NLP techniques on disaster tweets, and even generate your images of dogs with GANs. You will complete a final supervised, unsupervised, and deep learning project to demonstrate course mastery.
Calculus, Linear algebra, Python
Calculus, Linear algebra, Python
专项课程的运作方式
加入课程
Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。
实践项目
每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。
获得证书
在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

此专项课程包含 3 门课程
Introduction to Machine Learning: Supervised Learning
In this course, you’ll be learning various supervised ML algorithms and prediction tasks applied to different data. You’ll learn when to use which model and why, and how to improve the model performances. We will cover models such as linear and logistic regression, KNN, Decision trees and ensembling methods such as Random Forest and Boosting, kernel methods such as SVM.
Unsupervised Algorithms in Machine Learning
One of the most useful areas in machine learning is discovering hidden patterns from unlabeled data. Add the fundamentals of this in-demand skill to your Data Science toolkit. In this course, we will learn selected unsupervised learning methods for dimensionality reduction, clustering, and learning latent features. We will also focus on real-world applications such as recommender systems with hands-on examples of product recommendation algorithms.
Introduction to Deep Learning
Deep Learning is the go-to technique for many applications, from natural language processing to biomedical. Deep learning can handle many different types of data such as images, texts, voice/sound, graphs and so on. This course will cover the basics of DL including how to build and train multilayer perceptron, convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders (AE) and generative adversarial networks (GANs). The course includes several hands-on projects, including cancer detection with CNNs, RNNs on disaster tweets, and generating dog images with GANs.
提供方

科罗拉多大学波德分校
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
立即开始攻读硕士学位
常见问题
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程需要多长时间?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
完成专项课程后我会获得大学学分吗?
What will I be able to do upon completing the Specialization?
还有其他问题吗?请访问 学生帮助中心。