- Data Science
- Artificial Intelligence (AI)
- Machine Learning
- Predictive Analytics
- Ethics Of Artificial Intelligence
- Machine learning strategy and leadership
- Machine Learning (ML) Algorithms
Machine Learning Rock Star – the End-to-End Practice 专项课程
An End-to-End Guide to Leading and Launching ML. This expansive machine learning curriculum is accessible to business-level learners and yet vital to techies as well. It covers both the state-of-the-art techniques and the business-side best practices.
提供方

您将学到的内容有
Lead ML: Manage or participate in the end-to-end implementation of machine learning
Apply ML: Identify the opportunities where machine learning can improve marketing, sales, financial credit scoring, insurance, fraud detection, and much more
Greenlight ML: Forecast the effectiveness of and scope the requirements for a machine learning project and then internally sell it to gain buy-in
Regulate ML: Manage ethical pitfalls, the risks to social justice that stem from machine learning – aka AI ethics
您将获得的技能
关于此 专项课程
应用的学习项目
Problem-solving challenges: Form an elevator pitch, build a predictive model by hand in Excel or Google Sheets to visualize how it improves, and more (no exercises involve the use of ML software).
Vendor-Neutral
This specialization includes several illuminating software demos of ML in action using SAS products. However, the curriculum is vendor-neutral and universally-applicable. The learnings apply, regardless of which ML software you end up choosing to work with.
In-Depth Yet Accessible
Brought to you by a veteran industry leader who won teaching awards when he was a professor at Columbia University, this specialization stands out as one of the most thorough, engaging, and surprisingly accessible on the subject of ML.
Like a University Course
These three courses are also a good fit for college students, or for those planning for or currently enrolled in an MBA program. The breadth and depth of this specialization is equivalent to one full-semester MBA or graduate-level course.
Accessible to business-side learners yet also vital to techies. Engage in the commercial use of ML – whether you're an enterprise leader or a quant.
Accessible to business-side learners yet also vital to techies. Engage in the commercial use of ML – whether you're an enterprise leader or a quant.
专项课程的运作方式
加入课程
Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。
实践项目
每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。
获得证书
在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

此专项课程包含 3 门课程
The Power of Machine Learning: Boost Business, Accumulate Clicks, Fight Fraud, and Deny Deadbeats
It's the age of machine learning. Companies are seizing upon the power of this technology to combat risk, boost sales, cut costs, block fraud, streamline manufacturing, conquer spam, toughen crime fighting, and win elections.
Launching Machine Learning: Delivering Operational Success with Gold Standard ML Leadership
Machine learning runs the world. It generates predictions for each individual customer, employee, voter, and suspect, and these predictions drive millions of business decisions more effectively, determining whom to call, mail, approve, test, diagnose, warn, investigate, incarcerate, set up on a date, or medicate.
Machine Learning Under the Hood: The Technical Tips, Tricks, and Pitfalls
Machine learning. Your team needs it, your boss demands it, and your career loves it. After all, LinkedIn places it as one of the top few "Skills Companies Need Most" and as the very top emerging job in the U.S.
提供方

SAS
Through innovative software and services, SAS empowers and inspires customers around the world to transform data into intelligence. SAS is a trusted analytics powerhouse for organizations seeking immediate value from their data. A deep bench of analytics solutions and broad industry knowledge keep our customers coming back and feeling confident. With SAS®, you can discover insights from your data and make sense of it all. Identify what’s working and fix what isn’t. Make more intelligent decisions. And drive relevant change.
常见问题
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程后我会获得大学学分吗?
Is this specialization for data scientists or is it for non-technical, business-level learners?
How technical is this specialization and how much math is involved?
Are the learnings specific to SAS software?
Is this specialization for industry professionals or for university students?
Do I need to take the courses in a specific order?
AI ethics: Is equitable machine learning possible or will predictive models always perpetuate social injustice?
还有其他问题吗?请访问 学生帮助中心。