关于此 专项课程

1,931 次近期查看
Machine learning reinvents industries and runs the world. Harvard Business Review calls it “the most important general-purpose technology of our era.” But while there are so many how-to courses for hands-on techies, there are practically none that also serve the business leadership of machine learning – a striking omission, since success with machine learning relies on a very particular project leadership practice just as much as it relies on adept number crunching. By filling that gap, this course empowers you to generate value with ML. It delivers the end-to-end expertise you need, covering both the core technology and the business-side practice. Why cover both sides? Because both sides need to learn both sides! This includes everyone leading or participating in the deployment of ML. NO HANDS-ON. Rather than a hands-on training, this specialization serves both business leaders and burgeoning data scientists with expansive, holistic coverage. BUT TECHNICAL LEARNERS SHOULD TAKE ANOTHER LOOK. Before jumping straight into the hands-on, as quants are inclined to do, consider one thing: This curriculum provides complementary know-how that all great techies also need to master. WHAT YOU'LL LEARN. How ML works, how to report on its ROI and predictive performance, best practices to lead an ML project, technical tips and tricks, how to avoid the major pitfalls, whether true AI is coming or is just a myth, and the risks to social justice that stem from ML.
可分享的证书
完成后获得证书
100% 在线课程
立即开始,按照自己的计划学习。
灵活的计划
设置并保持灵活的截止日期。
初级
完成课程大约需要 3 个月
建议进度:4 小时/周
英语(English)
可分享的证书
完成后获得证书
100% 在线课程
立即开始,按照自己的计划学习。
灵活的计划
设置并保持灵活的截止日期。
初级
完成课程大约需要 3 个月
建议进度:4 小时/周
英语(English)

专项课程的运作方式

加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。

实践项目

每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。

获得证书

在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

此专项课程包含 3 门课程

课程1

课程 1

The Power of Machine Learning: Boost Business, Accumulate Clicks, Fight Fraud, and Deny Deadbeats

4.8
125 个评分
53 条评论
课程2

课程 2

Launching Machine Learning: Delivering Operational Success with Gold Standard ML Leadership

4.9
66 个评分
24 条评论
课程3

课程 3

Machine Learning Under the Hood: The Technical Tips, Tricks, and Pitfalls

4.8
52 个评分
23 条评论

提供方

Placeholder

SAS

常见问题

还有其他问题吗?请访问 学生帮助中心