关于此 专项课程
100% 在线课程

100% 在线课程

立即开始,按照自己的计划学习。
灵活的计划

灵活的计划

设置并保持灵活的截止日期。
中级

中级

完成时间(小时)

完成时间大约为2 个月

建议 9 小时/周
可选语言

英语(English)

字幕:英语(English)...

您将获得的技能

Distributed ComputingOptimistic Concurrency ControlParallel ComputingJava Concurrency
100% 在线课程

100% 在线课程

立即开始,按照自己的计划学习。
灵活的计划

灵活的计划

设置并保持灵活的截止日期。
中级

中级

完成时间(小时)

完成时间大约为2 个月

建议 9 小时/周
可选语言

英语(English)

字幕:英语(English)...

专项课程 的运作方式

加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。

实践项目

每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。

获得证书

在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

how it works

此专项课程包含 3 门课程

课程1

Parallel Programming in Java

4.5
485 个评分
102 个审阅
This course teaches learners (industry professionals and students) the fundamental concepts of parallel programming in the context of Java 8. Parallel programming enables developers to use multicore computers to make their applications run faster by using multiple processors at the same time. By the end of this course, you will learn how to use popular parallel Java frameworks (such as ForkJoin, Stream, and Phaser) to write parallel programs for a wide range of multicore platforms including servers, desktops, or mobile devices, while also learning about their theoretical foundations including computation graphs, ideal parallelism, parallel speedup, Amdahl's Law, data races, and determinism. Why take this course? • All computers are multicore computers, so it is important for you to learn how to extend your knowledge of sequential Java programming to multicore parallelism. • Java 7 and Java 8 have introduced new frameworks for parallelism (ForkJoin, Stream) that have significantly changed the paradigms for parallel programming since the early days of Java. • Each of the four modules in the course includes an assigned mini-project that will provide you with the necessary hands-on experience to use the concepts learned in the course on your own, after the course ends. • During the course, you will have online access to the instructor and the mentors to get individualized answers to your questions posted on forums. The desired learning outcomes of this course are as follows: • Theory of parallelism: computation graphs, work, span, ideal parallelism, parallel speedup, Amdahl's Law, data races, and determinism • Task parallelism using Java’s ForkJoin framework • Functional parallelism using Java’s Future and Stream frameworks • Loop-level parallelism with extensions for barriers and iteration grouping (chunking) • Dataflow parallelism using the Phaser framework and data-driven tasks Mastery of these concepts will enable you to immediately apply them in the context of multicore Java programs, and will also provide the foundation for mastering other parallel programming systems that you may encounter in the future (e.g., C++11, OpenMP, .Net Task Parallel Library)....
课程2

Concurrent Programming in Java

4.5
288 个评分
40 个审阅
This course teaches learners (industry professionals and students) the fundamental concepts of concurrent programming in the context of Java 8. Concurrent programming enables developers to efficiently and correctly mediate the use of shared resources in parallel programs. By the end of this course, you will learn how to use basic concurrency constructs in Java such as threads, locks, critical sections, atomic variables, isolation, actors, optimistic concurrency and concurrent collections, as well as their theoretical foundations (e.g., progress guarantees, deadlock, livelock, starvation, linearizability). Why take this course? • It is important for you to be aware of the theoretical foundations of concurrency to avoid common but subtle programming errors. • Java 8 has modernized many of the concurrency constructs since the early days of threads and locks. • During the course, you will have online access to the instructor and mentors to get individualized answers to your questions posted on the forums. • Each of the four modules in the course includes an assigned mini-project that will provide you with the necessary hands-on experience to use the concepts learned in the course on your own, after the course ends. The desired learning outcomes of this course are as follows: • Concurrency theory: progress guarantees, deadlock, livelock, starvation, linearizability • Use of threads and structured/unstructured locks in Java • Atomic variables and isolation • Optimistic concurrency and concurrent collections in Java (e.g., concurrent queues, concurrent hashmaps) • Actor model in Java Mastery of these concepts will enable you to immediately apply them in the context of concurrent Java programs, and will also help you master other concurrent programming system that you may encounter in the future (e.g., POSIX threads, .NET threads)....
课程3

Distributed Programming in Java

4.4
166 个评分
24 个审阅
This course teaches learners (industry professionals and students) the fundamental concepts of Distributed Programming in the context of Java 8. Distributed programming enables developers to use multiple nodes in a data center to increase throughput and/or reduce latency of selected applications. By the end of this course, you will learn how to use popular distributed programming frameworks for Java programs, including Hadoop, Spark, Sockets, Remote Method Invocation (RMI), Multicast Sockets, Kafka, Message Passing Interface (MPI), as well as different approaches to combine distribution with multithreading. Why take this course? • All data center servers are organized as collections of distributed servers, and it is important for you to also learn how to use multiple servers for increased bandwidth and reduced latency. • In addition to learning specific frameworks for distributed programming, this course will teach you how to integrate multicore and distributed parallelism in a unified approach. • Each of the four modules in the course includes an assigned mini-project that will provide you with the necessary hands-on experience to use the concepts learned in the course on your own, after the course ends. • During the course, you will have online access to the instructor and the mentors to get individualized answers to your questions posted on forums. The desired learning outcomes of this course are as follows: • Distributed map-reduce programming in Java using the Hadoop and Spark frameworks • Client-server programming using Java's Socket and Remote Method Invocation (RMI) interfaces • Message-passing programming in Java using the Message Passing Interface (MPI) • Approaches to combine distribution with multithreading, including processes and threads, distributed actors, and reactive programming Mastery of these concepts will enable you to immediately apply them in the context of distributed Java programs, and will also provide the foundation for mastering other distributed programming frameworks that you may encounter in the future (e.g., in Scala or C++)....

讲师

Avatar

Vivek Sarkar

Professor
Department of Computer Science

关于 Rice University

Rice University is consistently ranked among the top 20 universities in the U.S. and the top 100 in the world. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy....

常见问题

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • There are 3 courses in this Specialization. Based on a weekly commitment of 4-8 hours, you should be able to complete the Specialization in 12 weeks.

  • The Specialization is targeted at an audience that is already familiar with sequential programming in Java, including a basic knowledge of Java 8 lambdas.

  • No, you can take the courses in this Specialization in any order.

  • This course teaches industry professionals and students the fundamental concepts of parallel programming in the context of Java 8. Parallel programming enables developers to use multicore computers to make their applications run faster by using multiple processors at the same time. By the end of this course, you will learn how to use popular parallel Java frameworks such as ForkJoin and Stream to write parallel programs for a wide range of multicore platforms whether for servers, desktops, or mobile devices, while also learning about their theoretical foundations (e.g., deadlock freedom, data race freedom, determinism).

还有其他问题吗?请访问 学生帮助中心