关于此 专项课程

9,587 次近期查看
Continue developing your skills in TensorFlow as you learn to navigate through a wide range of deployment scenarios and discover new ways to use data more effectively when training your machine learning models. In this four-course Specialization, you’ll learn how to get your machine learning models into the hands of real people on all kinds of devices. Start by understanding how to train and run machine learning models in browsers and in mobile applications. Learn how to leverage built-in datasets with just a few lines of code, learn about data pipelines with TensorFlow data services, use APIs to control data splitting, process all types of unstructured data, and retrain deployed models with user data while maintaining data privacy. Apply your knowledge in various deployment scenarios and get introduced to TensorFlow Serving, TensorFlow, Hub, TensorBoard, and more. Industries all around the world are adopting Artificial Intelligence. This Specialization from Laurence Moroney and Andrew Ng will help you develop and deploy machine learning models across any device or platform faster and more accurately than ever. Looking for a place to start? Master the foundational basics of TensorFlow with the DeepLearning.AI TensorFlow Developer Professional Certificate. Looking to customize and build powerful real-world models for complex scenarios? Check out the TensorFlow: Advanced Techniques Specialization.
可分享的证书
完成后获得证书
100% 在线课程
立即开始,按照自己的计划学习。
灵活的计划
设置并保持灵活的截止日期。
中级
完成课程大约需要 4 个月
建议进度:3 小时/周
英语(English)
可分享的证书
完成后获得证书
100% 在线课程
立即开始,按照自己的计划学习。
灵活的计划
设置并保持灵活的截止日期。
中级
完成课程大约需要 4 个月
建议进度:3 小时/周
英语(English)

专项课程的运作方式

加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。

实践项目

每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。

获得证书

在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

此专项课程包含 4 门课程

课程1

课程 1

Browser-based Models with TensorFlow.js

4.7
826 个评分
186 条评论
课程2

课程 2

Device-based Models with TensorFlow Lite

4.7
493 个评分
87 条评论
课程3

课程 3

Data Pipelines with TensorFlow Data Services

4.3
399 个评分
87 条评论
课程4

课程 4

Advanced Deployment Scenarios with TensorFlow

4.7
374 个评分
47 条评论

提供方

Placeholder

deeplearning.ai

常见问题

还有其他问题吗?请访问 学生帮助中心