制作方:   University of Washington

  • Emily Fox

    教学方:    Emily Fox, Amazon Professor of Machine Learning

    Statistics

  • Carlos Guestrin

    教学方:    Carlos Guestrin, Amazon Professor of Machine Learning

    Computer Science and Engineering

基本信息44专项课程中 Machine Learning/ 的课程
承诺学习时间6 weeks of study, 5-8 hours/week
语言
English
如何通过通过所有计分作业以完成课程。
用户评分
4.6 stars
Average User Rating 4.6查看学生的留言
Course 4 of Specialization
授课大纲

常见问题解答

我什么时候能够访问课程视频和作业?

如果我需要额外的时间来完成课程会怎么样?

我支付此课程之后会得到什么?

我能够免费学习此课程吗?

退款条例是如何规定的?

有助学金吗?

运作方式
课程作业
课程作业

每门课程都像是一本互动的教科书,具有预先录制的视频、测验和项目。

来自同学的帮助
来自同学的帮助

与其他成千上万的学生相联系,对想法进行辩论,讨论课程材料,并寻求帮助来掌握概念。

证书
证书

获得正式认证的作业,并与朋友、同事和雇主分享您的成功。

制作方
University of Washington
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.
价格
旁听购买课程
访问课程材料

可用

可用

访问评分的材料

不可用

可用

收到最终成绩

不可用

可用

获得可共享的证书

不可用

可用

评分和审阅
已评分 4.6,总共 5 个 645 评分

Best Course on ML yet on the Web

A great course as the other 3 courses in the specialization.This course introduces and make us implement Knn,Kd trees,Gaussian Mixture model and LDA model for clustering and retrieval.The data set is the peoples wiki from the Foundations course and theres a assignment on clustering images too.If you have taken the other 3 an do this with ease and if you haven't taken those i think it will be better to take this course after the other 3.

Excellent course! Thanks a lot for the effort in compiling this course... I really enjoyed it!

The material is complex and challenging, but the teaching procedure is carefully thought out in a way that you quickly get it, giving you a great sense of accomplishment.