Fine Tune BERT for Text Classification with TensorFlow

4.5
89 个评分
提供方
Coursera Project Network
4,789 人已注册
在此免费的指导 项目中,您将:

Build TensorFlow Input Pipelines for Text Data with the tf.data API

Tokenize and Preprocess Text for BERT

Fine-tune BERT for text classification with TensorFlow 2 and TensorFlow Hub

在面试中展现此实践经验

Clock2.5 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

This is a guided project on fine-tuning a Bidirectional Transformers for Language Understanding (BERT) model for text classification with TensorFlow. In this 2.5 hour long project, you will learn to preprocess and tokenize data for BERT classification, build TensorFlow input pipelines for text data with the tf.data API, and train and evaluate a fine-tuned BERT model for text classification with TensorFlow 2 and TensorFlow Hub. Prerequisites: In order to successfully complete this project, you should be competent in the Python programming language, be familiar with deep learning for Natural Language Processing (NLP), and have trained models with TensorFlow or and its Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

必备条件

It is assumed that are competent in Python programming and have prior experience with building deep learning NLP models with TensorFlow or Keras

您要培养的技能

natural-language-processingTensorflowmachine-learningdeep-learningBERT

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introduction to the Project

  2. Setup your TensorFlow and Colab Runtime

  3. Download and Import the Quora Insincere Questions Dataset

  4. Create tf.data.Datasets for Training and Evaluation

  5. Download a Pre-trained BERT Model from TensorFlow Hub

  6. Tokenize and Preprocess Text for BERT

  7. Wrap a Python Function into a TensorFlow op for Eager Execution

  8. Create a TensorFlow Input Pipeline with tf.data

  9. Add a Classification Head to the BERT hub.KerasLayer

  10. Fine-Tune and Evaluate BERT for Text Classification

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自FINE TUNE BERT FOR TEXT CLASSIFICATION WITH TENSORFLOW的热门评论

查看所有评论

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心