Hyperparameter Tuning with Neural Network Intelligence

4.7

37 个评分

提供方

2,878 人已注册

在此指导项目中,您将:
2 hours
中级
无需下载
分屏视频
英语(English)
仅限桌面

In this 2-hour long guided project, we will learn the basics of using Microsoft's Neural Network Intelligence (NNI) toolkit and will use it to run a Hyperparameter tuning experiment on a Neural Network. NNI is an open source, AutoML toolkit created by Microsoft which can help machine learning practitioners automate Feature engineering, Hyperparameter tuning, Neural Architecture search and Model compression. In this guided project, we are going to take a look at using NNI to perform hyperparameter tuning. Please note that we are going to learn to use the NNI toolkit for hyperparameter tuning, and are not going to implement the tuning algorithms ourselves. We will use the popular MNIST dataset and train a simple Neural Network to learn to classify images of hand-written digits from the dataset. Once a basic script is in place, we will use the NNI toolkit to run a hyperparameter tuning experiment to find optimal values for batch size, learning rate, choice of activation function for the hidden layer, number of hidden units for the hidden layer, and dropout rate for the dropout layer. To be able to complete this project successfully, you should be familiar with the Python programming language. You should also be familiar with Neural Networks, TensorFlow and Keras. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Deep Learning

  • Artificial Neural Network

  • Machine Learning

  • automl

  • hyperparameter tuning

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

审阅

来自HYPERPARAMETER TUNING WITH NEURAL NETWORK INTELLIGENCE的热门评论

查看所有评论

常见问题