Machine Learning para series temporales con ARIMA, SARIMA...

提供方
Coursera Project Network
在此指导项目中,您将:

Conocer los fundamentos de las series temporales

Entrenar diferentes modelos estadísticos de series temporales como AR, MA, ARMA, ARIMA, SARIMA

Predecir datos futuros en base a series de tiempo

Clock2 horas
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots西班牙语(Spanish)
Laptop仅限桌面

Proyecto aplicado y práctico para aprender a entrenar modelos de Machine Learning como: AR, MA, ARMA, ARIMA, autoARIMA, SARIMA y autoSARIMA para predecir series temporales con Python.

您要培养的技能

  • ARMA
  • Machine Learning
  • Autoregressive Integrated Moving Average (ARIMA)
  • Time Series
  • SARIMA

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introducción a las series temporales

  2. Tipos de datos de series temporales

  3. Preprocesamiento y análisis de series temporales

  4. Ejercicio aplicado. Preprocesamiento y análisis

  5. Técnicas para transformar series en estacionarias

  6. Modelo de autoregresión (AR) y métricas de evaluación

  7. Ejercicio aplicado. Modelo AR

  8. Modelo de media móvil (MA) y media móvil autorregresiva (ARMA)

  9. Ejercicio aplicado MA y ARMA

  10. Modelo de ARIMA y autoARIMA

  11. Modelo de SARIMA y auto SARIMA

  12. Ejercicio aplicado. ARIMA y SARIMA

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心