Malaria parasite detection using ensemble learning in Keras

提供方
Coursera Project Network
在此指导项目中,您将:

Transform image files into arrays and create datasets

Create and Train a CNN model in Keras

Clock2 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 1-hour long project-based course, you will learn what ensemble learning is and how to implement is using python. You will create deep convolutional neural networks using the Keras library to predict the malaria parasite. You will learn various ways of assessing classification models. You will create an ensemble of deep convolutional neural networks and apply voting in order to combine the best predictions of your models. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Machine Learning
  • Python Programming
  • Ensemble Learning
  • python CV
  • Image Processing

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Load the cell image data

  2. Transform the image files into arrays and create the datasets

  3. Create a deep CNN

  4. Train and test the CNN

  5. Create the CNN models ensemble

  6. Fit the models in the ensemble and perform the prediction

  7. Apply hard voting to the ensemble

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心