Pneumonia Classification using PyTorch

提供方
Coursera Project Network
在此指导项目中,您将:

fine tune EfficientNet Model

build a simple trainer to train the model

Clock2 hours
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots英语(English)
Laptop仅限桌面

In this 2-hour guided project, you are going to use EfficientNet model and train it on Pneumonia Chest X-Ray dataset. The dataset consist of nearly 5600 Chest X-Ray images and two categories (Pneumonia/Normal). Our main aim for this project is to build a pneumonia classifier which can classify Chest X-Ray scan that belong to one of the two classes. You will load and fine tune the pretrained EffiecientNet model and also to create a simple pytorch trainer to train the model. In order to be successful in this project, you should be familiar with python, convolutional neural network, basic pytorch. This is a hands on, practical project that focuses primarily on implementation, and not on the theory behind Convolutional Neural Networks. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Deep Learning
  • Python Programming
  • Medical Imaging
  • pytorch
  • classification

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Configurations

  2. Image Transformation and Load Dataset

  3. Load dataset into batches

  4. Fine Tuning EfficientNet Model

  5. Build a Simple Trainer

  6. Training Model

  7. Plot Results

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心