Series temporales con Deep Learning (RNN, LSTM) y Prophet

提供方
Coursera Project Network
在此指导项目中,您将:

Entrenar y optimizar una red neuronal recurrente (RNN y LSTM)

Predecir series temporales con Facebook' Prophet

Predecir datos futuros con modelos de series temporales

Clock2 horas
Intermediate中级
Cloud无需下载
Video分屏视频
Comment Dots西班牙语(Spanish)
Laptop仅限桌面

En este proyecto aplicado y práctico aprenderás a entrenar redes neuronales recurrentes (RNN y LSTM) y modelos de Prophet para predecir series temporales. Tanto las redes LSTM como Prophet son algunos de los modelos más avanzados para predecir valores futuros en base a series de tiempo. Por ello, te enseñaremos a como pre-procesar y preparar tus datos, a entrenar los modelos, a evaluarlos, a optimizarlos y a utilizarlos para predecir datos futuros. Al finalizar este curso habrás aprendido a entrenar tus propios modelos y a aplicarlos en tus propios proyectos.

您要培养的技能

  • Deep Learning
  • Prophet
  • Time Series
  • Long Short-Term Memory (ISTM)
  • keras

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

  1. Introducción a las series temporales

  2. Fundamentos de Redes Neuronales Recurrentes (RNN y LSTM)

  3. Funciones básicas con Keras

  4. Pre-procesamiento de datos y entrenamiento del modelo LSTM

  5. Ejercicio práctico. Desarrollo de un modelo LSTM

  6. Evaluación del modelo y predicciones

  7. Ejercicio práctico. Evaluación del modelo y predicción

  8. Desarrollo de un modelo avanzado de LSTM

  9. Ejercicio práctico. Modelo avanzado de LSTM

  10. Predicción con nuevos datos y despliegue del modelo

  11. Ejercicio práctico. Evaluación y puesta en producción de la red LSTM

  12. Series temporales con Prophet

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题

常见问题

还有其他问题吗?请访问 学生帮助中心