关于此 专项课程

14,504 次近期查看
Fundamental concepts in probability, statistics and linear models are primary building blocks for data science work. Learners aspiring to become biostatisticians and data scientists will benefit from the foundational knowledge being offered in this specialization. It will enable the learner to understand the behind-the-scenes mechanism of key modeling tools in data science, like least squares and linear regression. This specialization starts with Mathematical Statistics bootcamps, specifically concepts and methods used in biostatistics applications. These range from probability, distribution, and likelihood concepts to hypothesis testing and case-control sampling. This specialization also linear models for data science, starting from understanding least squares from a linear algebraic and mathematical perspective, to statistical linear models, including multivariate regression using the R programming language. These courses will give learners a firm foundation in the linear algebraic treatment of regression modeling, which will greatly augment applied data scientists' general understanding of regression models. This specialization requires a fair amount of mathematical sophistication. Basic calculus and linear algebra are required to engage in the content.
学生职业成果
17%
加薪或升职。
可分享的证书
完成后获得证书
100% 在线课程
立即开始,按照自己的计划学习。
灵活的计划
设置并保持灵活的截止日期。
高级
完成时间大约为5 个月
建议 2 小时/周
英语(English)
学生职业成果
17%
加薪或升职。
可分享的证书
完成后获得证书
100% 在线课程
立即开始,按照自己的计划学习。
灵活的计划
设置并保持灵活的截止日期。
高级
完成时间大约为5 个月
建议 2 小时/周
英语(English)

此专项课程包含 4 门课程

课程1

课程 1

数学生物统计学入门 1

4.5
315 个评分
67 条评论
课程2

课程 2

数学生物统计学入门 2

4.3
78 个评分
16 条评论
课程3

课程 3

Advanced Linear Models for Data Science 1: Least Squares

4.5
140 个评分
36 条评论
课程4

课程 4

Advanced Linear Models for Data Science 2: Statistical Linear Models

4.6
62 个评分
11 条评论

提供方

Placeholder

约翰霍普金斯大学

常见问题

还有其他问题吗?请访问 学生帮助中心