Deep Dive Into The Modern AI Techniques. You will teach computer to see, draw, read, talk, play games and solve industry problems.

提供方

Advanced Machine Learning 专项课程

National Research University Higher School of Economics

关于此 专项课程

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings.

立即开始，按照自己的计划学习。

设置并保持灵活的截止日期。

字幕：英语（English）...

立即开始，按照自己的计划学习。

设置并保持灵活的截止日期。

字幕：英语（English）...

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习，请直接注册专项课程，或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时，您将自动订阅整个专项课程。您可以只完成一门课程，您可以随时暂停学习或结束订阅。访问您的学生面板，跟踪您的课程注册情况和进度。

每个专项课程都包括实践项目。您需要成功完成这个（些）项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程，则需要在开始之前完成其他所有课程。

在结束每门课程并完成实践项目之后，您会获得一个证书，您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

4.6

657 个评分

•

157 个审阅

The goal of this course is to give learners basic understanding of modern neural networks and their applications in computer vision and natural language understanding. The course starts with a recap of linear models and discussion of stochastic optimization methods that are crucial for training deep neural networks. Learners will study all popular building blocks of neural networks including fully connected layers, convolutional and recurrent layers.
Learners will use these building blocks to define complex modern architectures in TensorFlow and Keras frameworks. In the course project learner will implement deep neural network for the task of image captioning which solves the problem of giving a text description for an input image.
The prerequisites for this course are:
1) Basic knowledge of Python.
2) Basic linear algebra and probability.
Please note that this is an advanced course and we assume basic knowledge of machine learning. You should understand:
1) Linear regression: mean squared error, analytical solution.
2) Logistic regression: model, cross-entropy loss, class probability estimation.
3) Gradient descent for linear models. Derivatives of MSE and cross-entropy loss functions.
4) The problem of overfitting.
5) Regularization for linear models....

4.7

408 个评分

•

88 个审阅

If you want to break into competitive data science, then this course is for you! Participating in predictive modelling competitions can help you gain practical experience, improve and harness your data modelling skills in various domains such as credit, insurance, marketing, natural language processing, sales’ forecasting and computer vision to name a few. At the same time you get to do it in a competitive context against thousands of participants where each one tries to build the most predictive algorithm. Pushing each other to the limit can result in better performance and smaller prediction errors. Being able to achieve high ranks consistently can help you accelerate your career in data science.
In this course, you will learn to analyse and solve competitively such predictive modelling tasks.
When you finish this class, you will:
- Understand how to solve predictive modelling competitions efficiently and learn which of the skills obtained can be applicable to real-world tasks.
- Learn how to preprocess the data and generate new features from various sources such as text and images.
- Be taught advanced feature engineering techniques like generating mean-encodings, using aggregated statistical measures or finding nearest neighbors as a means to improve your predictions.
- Be able to form reliable cross validation methodologies that help you benchmark your solutions and avoid overfitting or underfitting when tested with unobserved (test) data.
- Gain experience of analysing and interpreting the data. You will become aware of inconsistencies, high noise levels, errors and other data-related issues such as leakages and you will learn how to overcome them.
- Acquire knowledge of different algorithms and learn how to efficiently tune their hyperparameters and achieve top performance.
- Master the art of combining different machine learning models and learn how to ensemble.
- Get exposed to past (winning) solutions and codes and learn how to read them.
Disclaimer : This is not a machine learning course in the general sense. This course will teach you how to get high-rank solutions against thousands of competitors with focus on practical usage of machine learning methods rather than the theoretical underpinnings behind them.
Prerequisites:
- Python: work with DataFrames in pandas, plot figures in matplotlib, import and train models from scikit-learn, XGBoost, LightGBM.
- Machine Learning: basic understanding of linear models, K-NN, random forest, gradient boosting and neural networks....

4.6

236 个评分

•

73 个审阅

Bayesian methods are used in lots of fields: from game development to drug discovery. They give superpowers to many machine learning algorithms: handling missing data, extracting much more information from small datasets. Bayesian methods also allow us to estimate uncertainty in predictions, which is a really desirable feature for fields like medicine.
When Bayesian methods are applied to deep learning, it turns out that they allow you to compress your models 100 folds, and automatically tune hyperparametrs, saving your time and money.
In six weeks we will discuss the basics of Bayesian methods: from how to define a probabilistic model to how to make predictions from it. We will see how one can fully automate this workflow and how to speed it up using some advanced techniques.
We will also see applications of Bayesian methods to deep learning and how to generate new images with it. We will see how new drugs that cure severe diseases be found with Bayesian methods....

4.3

117 个评分

•

33 个审阅

Welcome to the Reinforcement Learning course.
Here you will find out about:
- foundations of RL methods: value/policy iteration, q-learning, policy gradient, etc.
--- with math & batteries included
- using deep neural networks for RL tasks
--- also known as "the hype train"
- state of the art RL algorithms
--- and how to apply duct tape to them for practical problems.
- and, of course, teaching your neural network to play games
--- because that's what everyone thinks RL is about. We'll also use it for seq2seq and contextual bandits.
Jump in. It's gonna be fun!...

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communications, IT, mathematics, engineering, and more.
Learn more on www.hse.ru...

退款政策是如何规定的？

我可以只注册一门课程吗？

可以！点击您感兴趣的课程卡开始注册即可。注册并完成课程后，您可以获得可共享的证书，或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分，系统会自动为您订阅完整的专项课程。访问您的学生面板，跟踪您的进度。

有助学金吗？

我可以免费学习课程吗？

此课程是 100% 在线学习吗？是否需要现场参加课程？

此课程完全在线学习，无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

完成专项课程后我会获得大学学分吗？

此专项课程不提供大学学分，但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

完成专项课程需要多长时间？

Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 8-10 months.

What background knowledge is necessary?

As prerequisites we assume calculus and linear algebra (especially derivatives, matrices and operations with them), probability theory (random variables, distributions, moments), basic programming in python (functions, loops, numpy), basic machine learning (linear models, decision trees, boosting and random forests). Our intended audience are all people who are already familiar with basic machine learning and want to get a hand-on experience of research and development in the field of modern machine learning.

Do I need to take the courses in a specific order?

We recommend taking the “Intro to Deep Learning” course first as most of the subsequent courses will build on its material. All other courses can be taken in any order.

What will I be able to do upon completing the Specialization?

After completing 7 courses of the Specialization you will be able to:

Use modern deep neural networks for various machine learning problems with complex inputs;

Participate in data science competitions and use the most popular and effective machine learning tools;

Adopt the best practices of data exploration, preprocessing and feature engineering;

Perform Bayesian inference, understand Bayesian Neural Networks and Variational Autoencoders;

Use reinforcement learning methods to build agents for games and other environments;

Solve computer vision problems with a combination of deep models and classical computer vision algorithms;

Outline state-of-the-art techniques for natural language tasks, such as sentiment analysis, semantic slot filling, summarization, topics detection, and many others;

Build goal-oriented dialogue agents and train them to hold a human-like conversation;

Understand limitations of standard machine learning methods and design new algorithms for new tasks.

还有其他问题吗？请访问 学生帮助中心。