关于此专项课程

Learn SAS or Python programming, expand your knowledge of analytical methods and applications, and conduct original research to inform complex decisions.

The Data Analysis and Interpretation Specialization takes you from data novice to data expert in just four project-based courses. You will apply basic data science tools, including data management and visualization, modeling, and machine learning using your choice of either SAS or Python, including pandas and Scikit-learn. Throughout the Specialization, you will analyze a research question of your choice and summarize your insights. In the Capstone Project, you will use real data to address an important issue in society, and report your findings in a professional-quality report. You will have the opportunity to work with our industry partners, DRIVENDATA and The Connection. Help DRIVENDATA solve some of the world's biggest social challenges by joining one of their competitions, or help The Connection better understand recidivism risk for people on parole in substance use treatment. Regular feedback from peers will provide you a chance to reshape your question. This Specialization is designed to help you whether you are considering a career in data, work in a context where supervisors are looking to you for data insights, or you just have some burning questions you want to explore. No prior experience is required. By the end you will have mastered statistical methods to conduct original research to inform complex decisions.

...
Globe

100% 在线课程

立即开始,按照自己的计划学习。
Calendar

灵活的计划

设置并保持灵活的截止日期。
Beginner Level

初级

Clock

Approx. 7 months to complete

Suggested 3 hours/week
Comment Dots

English

字幕:English, Korean, German...

您将学到的内容有

  • Check
    Access and manage data using either the Python or SAS programming language
  • Check
    Explore patterns and associations among variables
  • Check
    Use machine learning methods to develop predictive algorithms

您将获得的技能

StatisticsData AnalysisMachine LearningRegression Analysis
Globe

100% 在线课程

立即开始,按照自己的计划学习。
Calendar

灵活的计划

设置并保持灵活的截止日期。
Beginner Level

初级

Clock

Approx. 7 months to complete

Suggested 3 hours/week
Comment Dots

English

字幕:English, Korean, German...

专项课程的运作方式

加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。

实践项目

每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。

获得证书

在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

how it works

此专项课程包含 5 门课程

课程1

Data Management and Visualization

4.4
647 个评分
182 个审阅
Whether being used to customize advertising to millions of website visitors or streamline inventory ordering at a small restaurant, data is becoming more integral to success. Too often, we’re not sure how use data to find answers to the questions that will make us more successful in what we do. In this course, you will discover what data is and think about what questions you have that can be answered by the data – even if you’ve never thought about data before. Based on existing data, you will learn to develop a research question, describe the variables and their relationships, calculate basic statistics, and present your results clearly. By the end of the course, you will be able to use powerful data analysis tools – either SAS or Python – to manage and visualize your data, including how to deal with missing data, variable groups, and graphs. Throughout the course, you will share your progress with others to gain valuable feedback, while also learning how your peers use data to answer their own questions....
课程2

Data Analysis Tools

4.5
317 个评分
72 个审阅
In this course, you will develop and test hypotheses about your data. You will learn a variety of statistical tests, as well as strategies to know how to apply the appropriate one to your specific data and question. Using your choice of two powerful statistical software packages (SAS or Python), you will explore ANOVA, Chi-Square, and Pearson correlation analysis. This course will guide you through basic statistical principles to give you the tools to answer questions you have developed. Throughout the course, you will share your progress with others to gain valuable feedback and provide insight to other learners about their work....
课程3

Regression Modeling in Practice

4.4
221 个评分
43 个审阅
This course focuses on one of the most important tools in your data analysis arsenal: regression analysis. Using either SAS or Python, you will begin with linear regression and then learn how to adapt when two variables do not present a clear linear relationship. You will examine multiple predictors of your outcome and be able to identify confounding variables, which can tell a more compelling story about your results. You will learn the assumptions underlying regression analysis, how to interpret regression coefficients, and how to use regression diagnostic plots and other tools to evaluate the quality of your regression model. Throughout the course, you will share with others the regression models you have developed and the stories they tell you....
课程4

Machine Learning for Data Analysis

4.2
202 个评分
45 个审阅
Are you interested in predicting future outcomes using your data? This course helps you do just that! Machine learning is the process of developing, testing, and applying predictive algorithms to achieve this goal. Make sure to familiarize yourself with course 3 of this specialization before diving into these machine learning concepts. Building on Course 3, which introduces students to integral supervised machine learning concepts, this course will provide an overview of many additional concepts, techniques, and algorithms in machine learning, from basic classification to decision trees and clustering. By completing this course, you will learn how to apply, test, and interpret machine learning algorithms as alternative methods for addressing your research questions....

讲师

Lisa Dierker

Professor
Psychology

Jen Rose

Research Professor
Psychology

行业合作伙伴

Industry Partner Logo #0
Industry Partner Logo #1

关于 Wesleyan University

At Wesleyan, distinguished scholar-teachers work closely with students, taking advantage of fluidity among disciplines to explore the world with a variety of tools. The university seeks to build a diverse, energetic community of students, faculty, and staff who think critically and creatively and who value independence of mind and generosity of spirit. ...

常见问题

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • No, Specializations are a premium product, and learners must pay or apply for financial aid to join them. You can access individual course content for free by searching for the course title in the catalog and choosing the This Course Only option when enrolling. You will not earn a Certificate in the free version of the course, or be able to access the Capstone Project.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 6-7 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over. The Capstone Project will be offered four times per year on a recurring schedule.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You will be able to access and manage data using either the Python or SAS programming language, explore patterns and associations among variables, and use machine learning methods to develop predictive algorithms. Additionally, you will have a portfolio of hands-on project work that demonstrates your ability to apply all of these methods to real-world situations.

  • You may choose to use either Python or SAS to complete the assignments. Both of these software packages are being made freely available.

  • This Specialization is appropriate for anyone interested in learning more about data analysis, including those new to the field. Some knowledge of basic programming and familiarity with linear algebra concepts may be helpful, but no specific background is required.

还有其他问题吗?请访问 学生帮助中心